Machine Readable Travel Documents (MRTD)
support in uFCoder library

Document version 1.0

Table of contents

Introduction

Library functions for MRTD support
MRTD _MRZDataToMRZProtoKey
MRTD_MRZSubjacentToMRZProtoKey
MRTDAppSelectAndAuthenticateBac
MRTDFileReadBacToHeap

ePassport MRTD Example

Revision history

N o o B W

~N

12

Introduction

Support for reading data groups from NFC tag embedded in the Machine Readable Travel Documents
(MRTDs), including ePassports that comply with ICAO specifications, has been implemented in the uFCoder
library.

Implementation supports Basic Access Control (BAC) mechanism for NFC chip access. BAC enable
authentication and secure cryptographic communication channel with an NFC tag embedded in the MRTD.
BAC is based purely on symmetric cryptography using 3DES algorithm and it is implemented according to
ICAQ 9303, part 11.

ICAO stands for International Civil Aviation Organization (https://www.icao.int). ICAO 9303 specification
standardizes MRTDs, including ePassports. You can find entire ICAO Doc 9303 series on
https://www.icao.int/publications/pages/publication.aspx?docnum=9303 web location.

MRTDs Basic Access Control is supported in uFCoder library from version 5.0.12.

In order to authenticate to NFC tag embedded in the MRTD first you have to pass document number, birth
date of the document holder and document expiration date to function MRTD _MRZDataToMRZProtoKey()
in order to get "proto key" from which will be derived other necessary security keys. All the data needed to
get “proto key” (document number, birth date of the document holder and document expiration date) are
encoded in Machine Readable Zone (MRZ) so the library have MRTD_MRZSubjacentToMRZProtoKey()
function which can be called instead of MRTD_MRZDataToMRZProtoKey(). This function accept null
terminated string containing subjacent row of the document MRZ. On the figure 1 you can see an example
of the MRZ with marked subjacent row which content you have to pass as parameter to function
MRTD_MRZSubjacentToMRZProtoKey().

UTOPIA
Passpor‘t/ Type! Type Country code/ Code dupays ~ Passport Number/ N° de passeport
Passeport P uTo 1898902C3
Surname/ Nom
ERIKSSON
Given names/ Prénoms
ANNA MARIA
Nationality/ Nationalité
UTOPIAN
Date of Birth/ Date de naissance Personal No./ N* personnel
12 AUG/AQUT 74 ZE 184226 B
Sex/ Sexe Place of birth/ Lieu de naissance
E ZENITH
Date of issue/ Date de délivrance Authority/ Autorité
16 APR/AVR 07 PASSPORT OFFICE
Date of expiry/ Date d’expiration Holder’s signature/ Signature du titulaire
15 APR/AVR 12 Anna Maria Exifisson

LIL 898902C36UTO?408122F12041592E184226B<<<<<1ﬂ|

figure 1

https://www.icao.int/publications/Documents/9303_p11_cons_en.pdf
https://www.icao.int/
https://www.icao.int/publications/pages/publication.aspx?docnum=9303

Library functions for MRTD support

MRTD _MRZDataToMRZProtoKey

Function description

In order to get MRZ Proto Key needed in subsequent steps, you can call this function and pass it null
terminated strings containing document number, document holder date of birth and document expiration
date. After successful function execution MRZ Proto Key will be stored in a mrz_proto_key 25-byte array.

Function declaration (C language)

UFR_STATUS MRTD MRZDataToMRZProtoKey (const char *doc_ number,
const char *date_ of birth,
const char *date of expiry,
uint8_t mrz_proto_key[25]);

Parameters

doc_number Pointer to a null terminated string containing exactly 9 characters
document number.

date of birth Pointer to a null terminated string containing exactly 6 characters
representing the date of birth in the "YYMMDD" format.

date of expiry Pointer to a null terminated string containing exactly 6 characters
representing expiration date in the “YYMMDD" format.

mrz_proto_key This byte array will contain calculated MRZ proto-key after successful
function execution. This array must have allocated at least 25 bytes prior
calling this function.

MRTD _MRZSubjacentToMRZProtoKey

Function description

In order to get MRZ Proto Key needed in subsequent steps, in case of the TD3 MRZ format (88 totally
character long), you can call this function and pass it null terminated string containing MRZ subjacent row.
Example of the TD3 MRZ format printed on the eMRTD document looks like this:

P<UTOERIKSSON<<ANNA<KMARIALLLLCLLLLLLLLLLLKLLLKL
L898902C36UT0O7408122F12041592E184226B<<<<<10

This function should receive a pointer to a null terminated string containing MRZ subjacent row
i.e. "L898902C36UTO7408122F1204159ZE184226B<<<<<10".

Function declaration (C language)

UFR_STATUS MRTD MRZSubjacentToMRZProtoKey (const char *mrz,
uint8_t mrz_proto_key[25]);

Parameters

mrz Pointer to a null terminated string containing MRZ data. According to ICAO
Doc 9303-10, there it has three MRZ data formats:

TD1,TD2 or TD3 formats. TD1 contains exactly 90 characters, TD2 contains
exactly 72 characters and TD3 contains exactly 88 characters.

mrz_proto_key This byte array will contain calculated MRZ proto-key after successful
function execution. This array must have allocated at least 25 bytes prior
calling this function.

MRTDAppSelectAndAuthenticateBac

Function description

Use this function to authenticate to the eMRTD NFC tag using BAC. This function establish security channel
for communication. Security channel is maintained using send_sequence_cnt parameter and channel
session keys are ksenc (for encryption) and ksmac (for calculating MAC).

Function declaration (C language)

UFR_STATUS MRTDAppSelectAndAuthenticateBac(const uint8_ t mrz_proto_key[25],
uint8 t ksenc[16],
uint8 t ksmac[16],
uint64_t *send_ sequence_cnt);

Parameters

mrz_proto_key MRZ proto-key acquired using prior call to
MRTD_MRZDataToMRZProtoKey()
or MRTD_MRZSubjacentToMRZProtoKey() function.

ksenc This array must have allocated at least 16 bytes prior calling this function.
This array will contain session encryption key after successful function
execution.

ksmac This array must have allocated at least 16 bytes prior calling this function.

This array will contain session key for calculating MAC after successful
function execution.

send _sequence_cnt

After successful execution of this function, pointer to this 64-bit value
should be saved and forwarded at every subsequent call to
MRTDFileReadBacToHeap() and/or other functions for reading eMRTD.

MRTDFileReadBacToHeap

Function description

Use this function to read files from the eMRTD NFC tag. You can call this function only after successfully
established security channel by the previously called
MRTDAppSelectAndAuthenticateBac() function. Session keys ksenc and ksmac, and also parameter
send_sequence_cnt are acquired by the previously called
MRTDAppSelectAndAuthenticateBac() function. After the successful call to this function, *output points to
the file data read from a eMRTD file specified by the file_index parameter. Buffer, in which the data is
stored, is automatically allocated on memory heap during function execution. Maximum amount of data
allocated can be 32KB. There is programmer responsibility to cleanup allocated data (i.e. by calling free(),
the standard C function) after use.

Function declaration (C language)

UFR_STATUS MRTDFileReadBacToHeap (const uint8 t *file index,

Parameters

uint8_ t **output,

uint32 t *output length,
const uint8_ t ksenc[1l6],
const uint8_t ksmac[l6],
uint64_t *send sequence cnt);

file_index

Parameter that specifies the file we want to read from the eMRTD. This is
pointer to byte array contains exactly two bytes designating eMRTD file.
Those two bytes are file identificator (FID) and there is a list of FIDs:
EF.COM = {Ox01, Ox1E}

EF.DG1 = {Ox01, Ox01}
EF.DG2 = {0x01, Ox02}
EF.DG3 = {0x01, Ox03}
EF.DG4 = {Ox01, Ox04}
EF.DG5 = {0x01, Ox05}
EF.DG6 = {Ox01, Ox06}
EF.DG7 = {Ox01, Ox07}
EF.DG8 = {Ox01, Ox08}
EF.DG9 = {0x01, Ox09}
EF.DG10 = {Ox01, OxOA}
EF.DG11 ={0x01, OxOB}
EF.DG12 ={0x01, Ox0C}
EF.DG13 ={0x01, Ox0OD}
EF.DG14 = {Ox01, OxOE}
EF.DG15 = {0x01, OxOF}
EF.DG16 = {0x01, Ox10}
EF.SOD = {0x01, Ox1D}

*output

After the successful call to this function, this pointer points to the file data
read from a eMRTD file specified by the file_index parameter. Buffer, in
which the data is stored, is automatically allocated during function
execution. Maximum amount of data allocated can be 32KB. There is
programmer responsibility to cleanup allocated data (i.e. by calling free(),
the standard C function) after use.

output_length

After the successful call to this function, this pointer is points to the size of
the file data read from a eMRTD file specified by the file_index parameter.

ksenc Session encryption key acquired using prior call to
MRTDAppSelectAndAuthenticateBac() function.
ksmac Session key for calculating MAC acquired using prior call to

MRTDAppSelectAndAuthenticateBac() function.

send_sequence_cnt

This pointer should point to a 64-bit value initialized by the previously
successful call to MRTDAppSelectAndAuthenticateBac() function.

Pointer to this 64-bit value should be saved and forwarded at every
subsequent call to this function and/or other functions used for reading
eMRTD.

ePassport MRTD Example

This example you can download from:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-ePassport _mrtd.git
or clone the entire eclipse cdt project using:

git clone --recursive https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-ePassport mrtd.git

command.
If you want quick run only, download the project and start binary executable from the appropriate folder:
e fora 32-bit Windows start the win32 _release\run_me.cmd
e for a 64-bit Windows start the win64 _release\run_me.cmd
e fora 32-bit Linux start linux32 _release/ePassport_mrtd
e fora 64-bit Linux start linux64 _release/ePassport_mrtd

Software example requires uFR reader device to be attached and configured to the PC. No other application
or service using uFR reader should be running on the computer. After successful start of the “ePassport
MRTD Example” you will get screen like on figure 2.

t, MRTD uFR NFC reader example
version 1.8

.COM (Common D:
.S0D (Document

to file

the binary file

figure 2: "ePassport MRTD Example” start screen

Now, you should choose one of the ‘M’ or ‘P’ options as stated in the application usage instructions on the
screen.
If you chose ‘M’ option, you will be prompted with text:

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-ePassport_mrtd.git

You have chose to enter subjacent MRZ row located under the
' PKXXXSURNAME<<FIRSTNAME<<K<KLLLLLLLLLLLLL LKL LKL ' :

Enter subjacent MRZ row. Subjacent MRZ row have to be 44 characters long.

so enter subjacent MRZ row. Example of the subjacent MRZ row you can see on the figure 1.

Otherwise, if you chose ‘P’ option you will be prompted with text:

You have chose to enter doc. number, date of birth and date of expiry
separately:

Enter the document number. The document number should be 9 characters long.
Enter date of birth. Date format have to be YYMMDD.

Enter date of expiry. Date format have to be YYMMDD.

so enter the data in the appropriate format.

After you have entered the valid data, application will inform you with a message:
MRZ proto-key has been set successfully.

After this message you can continue with a read operations on the NFC tag embedded in to ePassport that
data you have previously entered belongs.

Now you can put ePasspoert in the uFR reader field. On successful communication established you will get
basic information about NFC tag in the reader field. For example:

SAK and UID in this example are masked and they can have any arbitrary value. ePassports will be always
be recognized like DL_GENERIC_ISO14443_4 tag type.

Now you can chose application reading options:

‘C' - this option reads common data (EF.COM elementary file) from the ePassport. After successful reading,
datais parsed and displayed in the following format:

EF.COM has been successfully read. File length is ?? bytes
Raw data: 60 XX ...
Parsing the EF.COM raw data:
LDS version is 01.07
UNICODE version is 04.00.00
Existing data groups 1list:
Found: EF.DG1l
Found: EF.DG2
Found: EF.DG3
Found: EF.DG1l4

Raw data in this example are masked and they can have any arbitrary value. Only the raw data tag has
been present and it will be always the same (0x60). When you read your own document, you will get its
actual raw data here. More about LDS version and UNICODE version you can read in the ICAO 9303, part 10
document.

LDS and UNICODE version are followed by the data groups list that ePassport contains. Only DG1 and DG2
are mandatory. All the other data groups can be either present or not in the particular MRTD.

‘S" - this option reads the document security object (EF.SO, elementary file) and save it to the binary file
which path and name you have to enter when you prompted. Document security object contains digital
signature in the standard PKCS#7 CMS format. Presence of the EF.SO, on the MRTD is mandatory.

‘1" - this option reads the EF.DG1, parse it and displays raw and parsed data in the following format:

EF.DG1l has been successfully read. File length is ?? bytes

Raw data:

61 XX

XX XX

Simple parsing the EF.DGl raw data:
Document code: P (ePassport)
Issuing State or organization: ?°?°?
Name of holder: SURNAME FIRST NAME
Document number: ?7?7?7?7?7?7?7??
Nationality: 2?2?27
Date of birth (dd.MM.yyyy.): ??.2?2.22°?22.
Sex: ?°?°?°?
Date of expiry (dd.MM.yyyy.): ?2?2.2?2.72?777.
Optional data: ?°???7?2?2°?2?2?27?27??2°?°?

Raw data in this example are masked and they can have any arbitrary value. Only the raw data tag has
been present and it will be always the same (0x61). When you read your own document, you will get its
actual raw data here.

https://www.icao.int/publications/Documents/9303_p10_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p10_cons_en.pdf
https://tools.ietf.org/html/rfc2315
https://tools.ietf.org/html/rfc5652

‘2" - this option reads the EF.DG2 and save it to the binary file which path and name you have to enter
when you prompted. EF.DG2 contains document holder facial image and it is mandatory. EF.DG2 beside
facial image could contain biometric facial features to. More about EF.DG2 content you can read in the [CAQ
9303, part 10 document.

‘I - this option reads the EF.DG2 to. In this case only the facial image is extracted from the MRTD file and
saved to the file which path and name you have entered. Image format is automatically detected and the
file extension is set according to it. There are two possible image file formats defined for this context: JPEG
or JP2 (i.e. jpeg 2000).

‘D' - this option reads any of the elementary data group (EF.DG) files from the MRTD and save it to the
binary file which path and name you have to enter when you prompted. After this option has been chosen
you will be prompted for EF.DG index. Index can be from the range 1 to 16 (e.g. 1 for EF.DG1 and 14 for
EF.DG14). Elementary file you wanted to read must be listed in the EF.COM data groups list.

Reading of some optional elementary files, especially those containing biometric data, requires special
security mechanisms which is outside the scope of this document.

Current version of the “ePassport MRTD Example” is 1.0 an depands on the uFCoder library version 5.0.12
and uFR firmware version 5.0.22.

https://www.icao.int/publications/Documents/9303_p10_cons_en.pdf
https://www.icao.int/publications/Documents/9303_p10_cons_en.pdf

N)

Digital Logic

Revision history

Date Version Comment

2019-09-19 1.0 Base document

12
Digital Logic Ltd.

Address: Nemanjina 57a, 12000 Pozarevac, Serbia - Tel: +38112541022- VAT: 111385444 Regq. 21473642
e-mail: office@d-logic.com - www.d-logic.com

