
Reader Open Examples
v1.5

1

Table of contents

About 4

Platforms 4
Windows 4

Communication types 4
Architectures supported 4
Libraries 4

UWP (Universal Windows Platform) 4
Communication types 4
Architectures supported 4
Libraries 4

Linux 5
Communication types 5
Architectures supported 5
Libraries 5

MacOS 5
Communication types 5
Architectures supported 5
Libraries 5

Android 5
Communication types 5
Libraries 5

iOS 6
Communication types 6

ReaderOpen() 6
About 6
Algorithm 6
Changes 7

ReaderOpenEx() 7
About 7
Parameters 8

Reader type 8

2

Port name 8
Port interface 8
Additional argument (arg) 9

Examples 9
Serial port 9
FTDI 9
UDP 9
TCP 10
Android internal NFC 10
BLE 10

Android 10
iOS 10

BT Serial 10
Android 10

Additional notes (BT & BLE) 10

R e v i s i o n h i s t o r y 11

3

About
Starting with uFCoder library version 5.0.61 major changes to port open procedure have been introduced.
In particular, ReaderOpen() method from our API has been refactored & expanded, and as such it now
contains multiple steps when trying to open a port for communication between the host and the uFR Series
reader(s). The more advanced method, ReaderOpenEx() has had minor bug fixes and changes, however it
still works as intended - based on parameters provided.

Platforms

Windows

Communication types
Supports both FTDI communication & serial communication for cable connection, along with UDP/TCP for
uFR Online series readers only.

Architectures supported
x86, x86_64.

Libraries
Directory “ufr-lib/windows” contains both static & dynamic libraries for the supported architectures.

UWP (Universal Windows Platform)

Communication types
Supports serial communication only.

Architectures supported
ARM, x86, x86_64

Libraries
In addition to “uFCoder” libraries, “uwp-serial” libraries act as dependencies so the presence of both
libraries is mandatory. UWP projects require specific capability for serial communication to be enabled.
Refer to “Using uFCoder library on UWP” document for more details.

4

https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-doc/blob/master/Using_uFCoder_library_on_UWP.pdf

UWP libraries for the supported architectures are located inside the “ufr-lib/windows/uwp” directory.

Linux

Communication types
Serial communication for “/dev/ttyS*” ports, serial communication for “/dev/ttyUSB*” ports if “ftdi_sio”
module is present, FTDI communication is available only if “ftdi_sio” module is not present/blacklisted,
UDP/TCP communication for uFR Online series readers.

Architectures supported
x86, x86_64, ARMel, ARMhf, ARM64 (aarch64).

Libraries
Directory “ufr-lib/linux” contains both static & dynamic libraries for the supported architectures.

MacOS

Communication types
Serial communication, FTDI communication.

Architectures supported
x86_64 only.

Libraries
Directory “ufr-lib/macos” contains both static & dynamic libraries for the supported architecture.

Android

Communication types
FTDI communication for uFR devices via OTG cable, Android internal NFC (APDU commands only), Sunmi
devices (NFC, PSAM slot), Nexgo devices (contact card side slot, PSAM1, PSAM2).

Libraries
As of v5.0.61 there are three different different distributions of the uFCoder Android (.aar) library:

● Android library (supports internal Android NFC only and is located in “ufr-lib/android” directory).
5

● Android Nexgo (supports internal Android NFC & Nexgo devices and is located in
“ufr-lib/android_nexgo” directory).

● Android Sumi (supports internal Android NFC & Sunmi devices and is located in
“ufr-lib/android_sunmi” directory)

Integration & support for more devices will be in future updates.

iOS

Communication types
The iOS library currently supports µFR Nano Online reader only. It includes support for UDP, TCP, BLE
communication and usage of iOS internal NFC (APDU commands only). All of these options are available by
using the ReaderOpenEx() method with the appropriate parameters.

ReaderOpen()

About
As of uFCoder library v5.0.61, scope of ReaderOpen() method was expanded to encompass all of our most
frequent reader setups. As such it now contains 7 steps when trying to find & establish the communication
with the first available uFR Series Reader.
The purpose of these steps is the automatization of the reader open procedure. The ReaderOpen() method
will stop at the first found & successfully connected device, and as such will return UFR_OK (0) status.
Otherwise it will continue execution of the steps in this order, if no device was found with any of these
steps - UFR_READER_OPENING_ERROR status is returned.

Algorithm
ReaderOpen() order of execution is as follows:

1. uFR reader(s) with “uFR'' descriptors in their product description. FTDI port with the baud rate
1Mbps, no changes to RTS (by default uFR devices have inverted FTDI RTS)
- e.g uFR Nano, uFR CS, uFR Nano Online (transparent mode, requires cable connection)

2. Serial communication, at baud rate 115200bps, this step resets the device twice, first it tries setting
the RTS to HIGH and tests the communication with the device, if this fails then it immediately sets
the RTS to LOW and tests again.
- e.g RS232 uFR Series readers, CDC readers…

6

https://www.d-logic.com/nfc-rfid-reader-sdk/wireless-nfc-reader-ufr-nano-online/

3. FTDI communication, at baud rate 115200bps, resets the device and tests the communication.
- e.g uFR RS232 with inverted RTS

4. FTDI devices at 115200bps without changes to RTS
5. Serial communication at 115200bps, without changes to RTS
6. FTDI communication at 250000bps without changes to RTS
7. Serial communication at 250000bps without changes to RTS

As an alternative to ReaderOpen() method, these steps can be instead executed via the ReaderOpenEx()
method, with several calls & different parameters. Examples by steps:

1. ReaderOpenEx(1, “”, 2, “UNIT_OPEN_RESET_DISABLE”);
2. ReaderOpenEx(2, ””, 1, "READER_ACTIVE_ON_RTS_HIGH");

ReaderOpenEx(2, “”, 1, "READER_ACTIVE_ON_RTS_LOW");
3. ReaderOpenEx(2, “”, 2, “”);
4. ReaderOpenEx(2, “”, 2, “UNIT_OPEN_RESET_DISABLE”);
5. ReaderOpenEx(2, “”, 1, “UNIT_OPEN_RESET_DISABLE”);
6. ReaderOpenEx(3, “”, 2, “UNIT_OPEN_RESET_DISABLE”);
7. ReaderOpenEx(3, “”, 2, “UNIT_OPEN_RESET_DISABLE”);

Changes
As of uFCoder library version 5.0.73:

- Step 4 is expanded for the cases of uFR Online opening in transparent mode using these
parameters. ReaderOpen() will try to switch uFR Online from Transparent mode connection to
UDP/TCP if the device is connected to the network and has a valid IP address. If it fails, the reader
will continue communication via Transparent mode and cable connection.

As of uFCoder library version 5.0.75:
- Step 1 has been expanded to try opening the device with reader reset. On UWP and other platforms.

After trying without reset, next is trying to set RTS to HIGH and tests the device again, if that fails,
finally sets RTS to LOW and tries again. This use case is included to cover the cases of testing uFR
1Mbps devices when the “ftdi_sio” module is loaded. As such the procedure is slower but has
greater success rate in finding & opening of the device(s). For Linux systems, it is recommended to
use ReaderOpenEx() for faster reader opening with valid parameters.

7

ReaderOpenEx()

About
More advanced method that requires the user to specify the parameters.

Parameters
Parameters for this method are:

1. Reader type
2. Port name
3. Port interface
4. Additional argument(s)

Reader type
Used to specify device baud rate based on known types of our readers.
Supported values:

0 : auto - it will iterate through different values of the baud rate (1-3). If this parameter is specified
as 0 along with port interface - ReaderOpenEx() will act as if ReaderOpen() was called.

1: uFR type (1 Mbps)
2: uFR RS232 (115200 bps)
3: BASE HD (250 Kbps)

Port name
Specifies the port by its given name. For serial communication (port interface 1), depending on the platform,
will have “COM*” on Windows, “/dev/ttyS*” (or if “ftdi_sio” is loaded, “/dev/ttyUSB*” will appear for USB
connections) on Linux, “/dev/tty.usb*” on Mac etc…
If the port interface is set as 2 (FTDI communication), the port name parameter should be the FTDI serial
number.
If this parameter is left as an empty string, the uFCoder library will try to find & iterate through available

ports on its own.

Port interface
Specifies the type of communication interfaces (defines interface which will be used when trying to connect
to the reader).
Supported values:

8

0: (auto) first try FTDI , then serial, if port name is not defined
1: Try serial / virtual COM port / interfaces
2: Try FTDI only communication interfaces
10: Try to open Digital Logic Shields with RS232 uFReader on Raspberry Pi (serial interfaces with

GPIO reset)
84: ('T') : TCP/IP interface
85: ('U') : UDP interface
102: ('B'): BT serial interface (Android library only)
114: ('L'): BLE interface (Android library only). When uFR Online reader works in BT serial mode,

port_interface must be set to 0 (Except Android)

Additional argument (arg)
Used to specify additional settings when trying to establish communication. If left as empty, the default
value is assumed as “READER_ACTIVE_ON_RTS_LOW’.
Supported values:

“UNIT_OPEN_RESET_DISABLE”: do not reset the reader when opening
“UNIT_OPEN_RESET_FORCE” : force reset the reader when opening
"READER_ACTIVE_ON_RTS_LOW" : (default) Reset the reader when RTS is high - the reader works

when RTS is low.
"READER_ACTIVE_ON_RTS_HIGH" : Reset the reader when RTS is low - the reader works when

RTS is high.

You can specify more than one setting with space as the delimiter of the string.
If the port interface is set as 2 (FTDI communication), RTS is checked internally and will be set correctly to
reset the device, without the need to specify it through additional argument(s).

Examples

Serial port
Windows: ReaderOpenEx(1, “COMXX”, 1, “”);
UWP: ReaderOpenEx(1, “WINIOT:X”, 1, “”);
Linux:
ReaderOpenEx(1, “/dev/ttyUSBX”, 1, “”); (if module “ftdi_sio” is loaded)
ReaderOpenEx(1, “/dev/ttySX”, 1, “”);
MacOS: ReaderOpenEx(1, “/dev/tty.usbserial-xxxxxxx”, 1, “”);

9

FTDI
ReaderOpenEx(1, “A67M24SC”, 2, “”);
UWP does not support this type of communication.

UDP
ReaderOpenEx(0, “ip_address”, 85, “”);
or
ReaderOpenEx(0, “ip_address”, ‘U’, “”);

TCP
ReaderOpenEx(0, “ip_address”, 84, “”);
or
ReaderOpenEx(0, “ip_address”, ‘T’, “”);

Android internal NFC
ReaderOpenEx(5, “”, 0, “”);

BLE

Android

“port_name” parameter can contain either MAC address with “:” delimiter, or uFR Online series reader
serial number (ONXXXXXX)
e.g ReaderOpenEx(0, “ONXXXXXX”, ‘L’, “”);
or
ReaderOpenEx(0, “aa:bb:cc:dd:ee:ff”, ‘L’, “”);

iOS
“port_name” parameter should contain uFR Online series reader serial number (ONXXXXXX):
e.g ReaderOpenEx(0, “ONXXXXXX”, ‘L’, “”);

10

BT Serial

Android

“port_name” parameter can contain either MAC address with “:” delimiter, or uFR Online series reader
serial number (ONXXXXXX)
e.g ReaderOpenEx(0, “ONXXXXXX”, ‘B’, “”);
or
ReaderOpenEx(0, “aa:bb:cc:dd:ee:ff”, ‘B’, “”);

Additional notes (BT & BLE)
Up to uFCoder version 5.0.64: uFR Online Series reader needs pairing with the Android beforehand.
As of uFCoder version 5.0.65: uFR Online Series reader no longer requires mandatory pairing with the
Android device. The user can simply provide the MAC address/serial number as ‘port_name’ parameter of
the ReaderOpenEx() method, and the uFCoder library will try to find the device & connect to it. Depending on
the settings of the uFR Online reader, user will be then prompted to pair it after a successful connection.

R e v i s i o n h i s t o r y

Date Version Comment

2022-10-27 1.5 Section Algorithm updated with changes made in
uFCoder version 5.0.75

2022-10-20 1.4 Section Algorithm updated with changes made in
uFCoder version 5.0.73

2022-03-14 1.3 Section Additional notes (BT & BLE) added.

2022-03-10 1.2 Examples updated: Android & iOS BLE. Android BT.
11

2022-03-08 1.1 Revision history updated. Title of the document
updated. Section Algorithm updated. Android & iOS
communication details updated.

2022-03-07 1.0 Base document

12

