UFR Series NFC reader API reference

This document applies to Digital Logic’s uFR Series readers only.

For more information, please visit http://www.d-logic.net/nfc-rfid-reader-sdk/

The scope of this document is to give a better insight and provide easy start with uFR Series NFC
readers.

uFR Series readers communicate with the host via built in FTDI's USB to Serial interface chip.

If you have a uFR Series reader with RS232 interface, please refer to the “Communication
protocol - uFR Series” document at our download section.

We provide dynamic libraries for all major OS: Win x86, Win X86_64, Linux x86, Linux x86_64,
Linux ARM (and ARM HF with hardware float) and Mac OS X.

Our dynamic libraries rely on FTDI D2XX direct drivers. Most of them are already built in today's
modern OS. However, we always suggest a clean driver installation procedure by downloading
and installing drivers from FTDI's download webpage.

Android platform is supported through FTDI’'s Java D2XX driver. Since this approach introduces a
new Java class, it shall be a scope of separate document.
Important update:

From library version 4.01 and up, it is possible to establish communication with reader without
using FTDI's D2XX driver by calling the ReaderOpenEx function. Library can talk to the reader
via COM port (physical or virtual) without implementing FTDI's calls. However, this approach is
not as fast as with use of D2XX drivers but gives much more flexibility to users who had to use
COM protocol only, now they can use the whole API set of functions via COM port.

Dynamic libraries names are built upon following convention:

- Library always have “uFCoder” in its name as mandatory
- Prefix “lib” according to platform demands

— Suffix with architecture description

- Extension according to platform demands

Our standard library pack contains following libraries:

Digital Logic, www.d-logic.net Page 1

— libuFCoder-arm.so — for Linux on ARM platforms with software float

— libuFCoder-armhf.so - for Linux on ARM platforms with hardware float
— libuFCoder-x86.so — for Linux on Intel 32 bit platforms

- libuFCoder-x86_64.so0 - for Linux on Intel 64 bit platforms

— uFCoder-x86.dIl — for Windows 32 bit

— uFCoder-x86_64.dll — for Windows 64 bit

- libuFCoder.dylib — for all OS X Intel based versions

Update policy: we release updated firmware and libraries frequently, with minor & major
updates, bug-fixes, new features etc. All libraries mentioned above are affected with each
update. Updates are absolutely free and can be obtained from our download page at “Libraries”
section, while firmware updates are available at “Firmware” section by using software tool
specially designed for that purpose. Library update package always have the following directory
structure:

— “‘include” - contains “uFCoder.h” header file

- “linux” — contains directories “arm”, “armhf’, “x86” with appropriate libraries

- “osx” — contains library for OSX

- “‘windows” — contains libraries for Windows

and appropriate README file with short description of current revision.

Because FTDI driver is mandatory, proper installation method must be followed. See appendix for
FTDI troubleshooting for details.

When you call library function, in most cases you are issuing protocol command to reader
firmware. Library functions are usually wrapped firmware commands. This approach is very
convenient for rapid application development and as time saving feature. Particularly, library
function does the following:

- Check if all function parameters are proper
- Send corresponding firmware command to reader with parameters given
— Parses reader’s response as “out” parameters and function result

There are exceptions of this rule for certain type of functions. For firmware functions, please refer
to “Communication protocol - uFR Series” document at our download section.

Digital Logic, www.d-logic.net Page 2

Multi reader support

There can be many uFR Series readers connected to a single host. Natively, all library functions
are intended for use with “single reader” configuration.

All “single reader” functions have corresponding “multi reader” function. Multi reader functions
differs from the “single” functions by following:

Multi-function name always have suffix “M” at the end of function name

First parameter of Multi-function is always “Handle”. For example,

SomeFunction (void) => SomeFunctionM (Handle)

OtherFunction (parl, par2) => OtherFunctionM(Handle, parl, par2)
More about Multi-function usage can be found in the Handling with multiple readers.

Function syntax and data types in this document
By default, all functions are shown as their prototypes in C language.

All data types refers C types, except new defined “c_string” data type which representing null
terminated char array (also known as “C-String”). Array is always one byte longer (for null
character) then string. “c_string” is defined as

“typedef const char * ¢ string”.

For quick reference, always consult latest header file “uFCoder.h” at library package. Direct link
to “uFCoder.h” can be found on the GIT repository: https://www.d-logic.net/code/nfc-rfid-reader-
sdk/ufr-lib/blob/master/include/uFCoder.h

Error codes

All functions always have return result with corresponding status code. Please refer to table
ERR_CODES in Appendix: ERROR CODES (DL_STATUS result).

In general you should always get function result = 0x00 if function is finished properly. One
exception from this rule is if you get “0x08” — “NO_CARD?” result. In a matter of fact, this is not an
error, function is executed properly but there is no card present at readers RF field.

All other results indicates that some error occurred.

Digital Logic, www.d-logic.net Page 3

API set of functions

API set of functions is divided in three categories:

1. Common set
2. Advance set
3. Access control set

Common set of functions is shared among all uFR Series devices.

Advance set contains additional functions for use with uFR Advance and BASE HD uFR
devices. It has additional functions for use of Real Time Clock (RTC) and user configurable
EEPROM functions.

Access control set contains additional functions for use with BASE HD uFR devices. It has
additional functions for use of 1/O features like control of door lock, relay contacts and various
inputs.

In further reading functions will be marked if they belong to Advance or Access control set.

Library functions

Functions are divided into several groups, based on purpose.

Functions related to reader itself, to obtain some info or set certain device parameters.

Functions used for card (or tag) data manipulation, such as obtaining some info, reading or
writing data into card. Can be divided into several groups:

General purpose card related commands

Functions for getting common card data, not specific to card type.

Mifare Classic specific commands

Functions specific to Mifare Classic ® family of cards (Classic 1K and 4K). All functions
are dedicated for use with Mifare Classic ® cards. However, some functions can be
used with other card types, mostly in cases of direct addressing scheme and those
functions will be highlighted in further text.

a) Block manipulation commands — direct and indirect addressing

Functions for manipulating data in blocks of 16 byte according to Mifare Classic ®
memory structure organization.

Digital Logic, www.d-logic.net Page 4

b) Value Block manipulation commands — direct and indirect addressing

Functions for manipulating value blocks byte according to Mifare Classic ® memory
structure organization.

c) Linear data manipulation commands

Functions for manipulating data of Mifare Classic ® memory structure as a Linear
data space.

From firmware version 5.0.29. same functions may be used with Mifare Plus ® card in
SL3 mode. In SL3 mode uses the AES keys, which calculated from Crypto 1 keys.

NFC — NDEF related commands

Functions for reading and writing common NDEF messages and records into various
NFC tags. Currently, only NFC Type 2 Tags are supported, while support for other NFC
Tag types will be added in future upgrades.

NTAG related commands

Functions specific to NTAG ® family chips such as NTAG 203, 210, 212, 213, 215, 216.
Due to the different memory sizes of various NTAG chips, we implemented functions for
handling NTAG chips as generic NFC Type 2 Tag.

UID ASCII mirror support

NTAG 21x family offers a specific feature named “UID ASCII mirror function” which is
supported by the uFR API using the function write ndef record mirroring(). For
details about “UID ASCIl mirror function” refer to http://www.nxp.com/docs/en/data-
sheet/NTAG213_215 216.pdf (in Rev. 3.2 from 2. June 2015, page 21)
and http://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf (in Rev. 3.0 from 14.
March 2013, page 16).

NFC counter mirror support

NTAG 213, 215 and 216 devices offer a specific feature named “NFC counter mirror
function” which is supported by the uFR APl using the function
write_ndef record mirroring(). For details about “NFC counter mirror function”
refer to a document
http://www.nxp.com/docs/en/data-sheet/NTAG213_215 216.pdf (in Rev. 3.2 from 2.
June 2015, page 23).

UID and NFC counter mirror support

NTAG 213, 215 and 216 devices offer a specific feature named “UID and NFC counter
mirror function” which is supported by the uFR APl wusing the function
write ndef record mirroring(). For details about “NFC counter mirror function”
refer to a document http://www.nxp.com/docs/en/data-sheet/NTAG213_215_216.pdf (in
Rev. 3.2 from 2. June 2015, page 26).

Digital Logic, www.d-logic.net Page 5

Mifare DESFire specific commands

Functions specific to Mifare DESFire® cards. All uFR Series readers support DESfire
set of commands in AES encryption mode according to manufacturer's
recommendations.

All readers have hardware built-in AES128 encryption mechanism. That feature
provides fast and reliable results with DESFire cards without compromising security
keys. Since DESFire EV1/EV2 cards come in DES mode as factory default setting (due
to backward compatibility with older DESfire cards), cards must be turned to AES mode
first. There is a library built in for that purpose.

From library version 5.0.14 and firmware version 5.0.25. operations with DES, 2K3DES,
3K3DES, and AES keys supported.

Mifare Classic ® family of cards uses an authentication mechanism based on 6 bytes
keys, which will be explained later in more detail.

NTAG ® 21x family chips and MIFARE Ultralight EV1 uses password verification
protection based on PWD and PACK pairs which length is 6 bytes in total. PWD is 4
bytes in length and PACK is contained in 2 bytes. uFR API use this 6 bytes PWD/PACK
pair (first goes 4 bytes of the PWD following by the 2 bytes of the PACK) to form
PWD/PACK key which is used for password verification with those chip families in the
similar manner as the authentication mechanism based on 6 bytes keys.

Selection of the authentication and password verification mechanisms, in the data
manipulation functions, is based on the value of the auth_mode parameter.

For details about “Password verification protection” refer to following documents:
http://www.nxp.com/docs/en/data-sheet/NTAG213_215 216.pdf (in Rev. 3.2 from 2.
June 2015, page 30), http://www.nxp.com/docs/en/data-sheet/NTAG210_212.pdf (in

Rev. 3.0 from 14. March 2013, page 19) and
https://www.nxp.com/docs/en/data-sheet/MFOULX1.pdf (in Rev. 3.2 from 23. Nov 2017,
page 16).

Specific firmware features

There are few firmware features which are specific to uFR Series readers.

In this mode, the reader acts as a Tag. In that mode, not all library functions are available.
Reader must be explicitly turned in or out of Tag Emulation mode. Maximum total size for
emulated NDEF message is 144 bytes.

In further reading this topic will be covered in more detail.

Digital Logic, www.d-logic.net Page 6

In combined mode, the reader is switching from reader mode to Tag Emulation mode and vice
versa a few times in seconds. Reader must be explicitly turned in or out of Combined mode.

In further reading this topic will be covered in more detail.

This feature is turned off by default.

IF turned on, it will send card UID as a row of characters on COM port at defined speed using
following format:

[Prefix byte] UID chars [Suffix byte]
Where Prefix byte is optional and Suffix byte is mandatory.
In further reading this topic will be covered in more details.

Sleep feature is turned off by default. If turned on, it will put reader into special low power
consumption mode to preserve power. In this mode, reader will respond only on function to “wake
up”: turn sleep off.

Autosleep feature is different than previous in one major point: it will put reader into sleep after a
predefined amount of time and will respond to function calls. Time can be adjusted with dedicated
API function.

In further reading this topic will be covered in more details.
Card UID remarks

uFR Series readers support Card Unique |IDentifier (Card UID) with various byte length according
to defined standards.

4 byte IDs: Non-unique IDs (NUID) are 4 byte long and as the name says, they are Non-Unique,
so there is always possibility of existing two or more cards with the same ID (NUID).

7 byte IDs: Card UID are currently 7 byte long with never card types and still provide number
range which large enough to provide uniqueness of IDs. These type of UIDs are fully supported
at uFR series devices.

10 byte IDs: currently not in use but they are defined by standard for some future use. UFR
Series devices are capable of handling this type of IDs when they become available.

Digital Logic, www.d-logic.net Page 7

Mifare Classic chips overview

One of the most popular and worldwide used contactless card type is NXP's Mifare Classic card,
which comes in two memory map layouts: as 1K and 4K card.

Most of mentioned cards comes with 4 byte NUID. Cards with newer production date can be
found with 7 byte UID too, especially MF1S70 type.

Mifare Classic 1K (MF1S50) and its derivatives has EEPROM with 1024 bytes storage, where
752 bytes are available for user data.

1 Kbyte EEPROM is organized in 16 sectors with 4 blocks each. A block contains 16 bytes. The
last block of each sector is called “trailer”, which contains two secret keys (KeyA and KeyB) and
programmable access conditions for each block in this sector.

Keys are encrypted with proprietary algorithm called “Crypto1”.

Figure 1 : MF1S850 memory map

Se(c):tor Block 0 Manufacturer Data
Block 1 DATA
Block 2 DATA
I?I_Ioc_k 3 Keys and Access Conditions
railer
Se;’tor Block 0 DATA
Block 1 DATA
Block 2 DATA
Bloqk 3 Keys and Access Conditions
Trailer
Seclor | Block 0 DATA
Block 1 DATA
Block 2 DATA
Bloqk 3 Keys and Access Conditions
Trailer

Mifare Classic 4K (MF1S70) and its derivatives has EEPROM with 4096 bytes storage, where
3440 bytes are available for user data.

4 Kbyte EEPROM is organized in 40 sectors with 4 blocks each. A block contains 16 bytes. The
last block of each sector is called “trailer”, which contains two secret keys (KeyA and KeyB) and
programmable access conditions for each block in this sector.

On the contrary of MF1S50, memory is organized in 32 sectors of 4 blocks (sectors 0 -31) and 8
sectors of 16 blocks (sectors 32 - 39).

Keys are encrypted with proprietary algorithm called “Crypto1”.

Digital Logic, www.d-logic.net Page 8

Figure 2 : MF1S870 memory map

Se(c):tor Block 0 Manufacturer Data
Block 1 DATA
Block 2 DATA
Bloqk 3 Keys and Access Conditions
Trailer
Sector | Block 0 DATA
Block 1 DATA
Block 2 DATA
Bloqk 3 Keys and Access Conditions
Trailer
SeC" | Block 0 DATA
Block 1 DATA
Block 2 DATA
?_Iogk 3 Keys and Access Conditions
railer
S%Cztor Block 0 DATA
Block 1 DATA
DATA
BIOCl.(15 Keys and Access Conditions
Trailer
S%‘gor Block 0 DATA
Block 1 DATA
DATA
BIOCl.(15 Keys and Access Conditions
Trailer

Mifare Classic Keys and Access Conditions

Understanding memory map and access conditions of MF1S50 and MF1S70 cards is a must for

proper data manipulation with mentioned cards.

Since that subject needs further reading and study, it is out of scope of this document.
Please refer to manufacturer’'s technical documents for further details. Documents are available

at public access on the manufacturer’s website.

Further reading of this document is not recommended before one get better insight and

understanding of mentioned chip types.

Digital Logic, www.d-logic.net

We will try to give brief explanation of access bits and conditions. The next part of the text is
taken from manufacturer's documentation “MF1ICS50 — Functional specification” available
publicly here.

The access conditions for every data block and sector trailer are defined by 3 bits, which are
stored non-inverted and inverted in the sector trailer of the specified sector.

The access bits control the rights of memory access using the secret keys A and B. The access
conditions may be altered, provided one knows the relevant key and the current access condition
allows this operation.

Remark: With each memory access the internal logic verifies the format of the access conditions.
If it detects a format violation the whole sector is irreversible blocked.

Remark: In the following description the access bits are mentioned in the non-inverted mode
only.

The internal logic of the MF1ICS50 ensures that the commands are executed only after an
authentication procedure or never.

Figure 1 Access conditions

Access Bits Valid Commands Block Description
C13C23C3; read, write 3 segtor
trailer
C1,C2,C3, | , read, write, increment, 2 data block
decrement, transfer, restore
C1, C2; C3; read, write, increment, 1 data block
decrement, transfer, restore
C1o C25 C30 read, write, increment, 0 data block
decrement, transfer, restore

Digital Logic, www.d-logic.net Page 10

Figure 2 Organization of Access Bits

Byte 111 1] 1 1] 1

number | 0] 1] 2|3/ 4/5/%]7/8]°% 0] 1] 2| 3|a]s
Key A Access bits Key B

Bits 7 6 5 4 3 2 1 0

Byte 6 C23 022 C21 C20 C1 3 C1 2 C1 1 C1 0

Byte 7 C1s C1, C14 C1o C3s C3; C34 C3o

Byte 8 C3; C3; C34 C3o C2; C2, C2; C2

Byte 2

(GPB) General Purpose Byte - USER data

Depending on the access bits for the sector trailer (block 3) the read/write access to the keys and
the access bits is specified as ‘never’, ‘key A’, ‘key B’ or key A|B’ (key A or key B).

On chip delivery the access conditions for the sector trailers and key A are predefined as
transport configuration. Since key B may be read in transport configuration, new cards must be
authenticated with key A. Since the access bits themselves can also be blocked, special care
should be taken during personalization of cards.

Figure 3 Access conditions for the sector trailer

Access , Access condition for
value | “ecess bits KEYA Access bits KEYB Remark
arg. C15 | C23 | C33 | read | write | read | write | read | write
0 0 0 0 | never | key A kzy never | key A | key A | Key B may be read!"
2 0 1 0 | never | never kzy never | key A | never | Key B may be read™
4 1 0 0 | never | key B ;Tg never | never | key B
6 1 1 0 | never | never ;Tg never | never | never
Key B may be read,
1 0 0 1 | never | key A kzy key A | key A | key A transport
configuration!™
3 0 1 1 | never | key B ;Té key B | never | key B
5 1 0 1 | never | never 'IZ\T%/ key B | never | never
7 1 1 1 never | never 'IZ\T%/ never | never | never

" Remark: the grey marked lines are access conditions where key B is readable and may be used for data.

Digital Logic, www.d-logic.net Page 11

Depending on the access bits for data blocks (blocks 0...2) the read/write access is specified as
‘never’, ‘key A’, ‘key B’ or ‘key A|B’ (key A or key B). The setting of the relevant access bits
defines the application and the corresponding applicable commands.

° Read/write block: The operations read and write are allowed.

() Value block: Allows the additional value operations increment, decrement, transfer and
restore. In one case (‘001’) only read and decrement are possible for a non-rechargeable card.
In the other case (‘110’) recharging is possible by using key B.

o Manufacturer block: The read-only condition is not affected by the access bits setting!
Figure 4 Access conditions for data blocks
Access Access bits Access condition for
value decrement i
’ Applicat
(fothe | C1|C2|C3| read write | increment | transfer, pprication
function) restore
] 1 1 1 transport
0 0 0 0 | key AIB" | key A|B key A|B key A|B configuration
2 0 1 0 | key A|B' never never never read/write block
4 1 0 | 0 | keyAB' | keyB' never never read/write block
6 1 1 0 | keyAB' | keyB!' key B' key A|B1 value block
1 0| 0 | 1 |keyAB'| never never key A|B’ value block
3 0 1 1 key B’ key B' never never read/write block
5 1 0 1 key B’ never never never read/write block
7 1 1 1 never never never never read/write block

® Key management: In transport configuration key A must be used for authentication’

11f Key B may be read in the corresponding Sector Trailer it can’t serve for authentication (all grey marked lines in previous table).
Consequences: If the RDW tries to authenticate any block of a sector with key B using grey marked access conditions, the card will
refuse any subsequent access after authentication.

Digital Logic, www.d-logic.net Page 12

Reader keys

All uFR Series devices has reserved nonvolatile memory space where following keys are stored:
» 32 Mifare Classic authentication keys, each 6 byte long, indexed [0-31]

* 16 AES keys for use with DESFire and Mifare Plus cards, each 16 bytes long, indexed [0-
15]

All Mifare Classic keys have factory default value as 6 bytes of OxFF.
All DESfire keys have factory default value as 16 bytes of 0x00.

Important Note: Keys are stored in reader using one way function and protected with password.
Keys can be changed with appropriate credentials but can’t be read in any circumstances. Please
bear this in mind when handling key values.

Mifare Classic authentication modes and usage of keys

There are four possible ways of using Mifare keys when authenticating to card and they are
named as follows:

* Reader Keys mode (RK) - default
* Automatic Key Mode 1 (AKM1)

* Automatic Key Mode 2 (AKM2)

* Provided Key mode (PK)

All Mifare Classic related functions have basic function name for default authentication method
(RK) and three other variations with appended suffixes AKM1, AKM2 or PK. In further reading we
will explain each basic function with variations of key mode usage.

All Mifare keys can be used as “Key A" or “Key B” as defined in Mifare Classic technical
document.

For that purpose, each function which use authentication with keys also have parameter
“AuthMode” which defines if particular key is used as “Key A” or “Key B”.

In uFR Series API there are two constants defined for this case :
MIFARE AUTHENTIA = 0x60 -actual key is used as “Key A”
MIFARE AUTHENTIB = 0x61 - actual key is used as “Key B”

For Mifare Plus cards in SL1 mode uses same authentication modes.

For Mifare Plus cards in SL3 mode uses these authentication modes, and
MIFARE_PLUS_AES AUTHENT1A = 0x80
MIFARE_PLUS_AES_AUTHENT1B = 0x81

Digital Logic, www.d-logic.net Page 13

When using this authentication mode, keys stored in reader's memory are used for authentication
to Mifare card. Reader Key index [0..31] is passed as function argument.

Example:

Reader keys are all set to default value 6 bytes of OxFF. We want to use key “A0 A1 A2 A3 A4
A5h” as key A to authenticate to card.

First this key must be stored into reader's NVRAM at certain index, for example index=3.

Next, we use “SomeFunction” to do something with card where authentication is must and key is
‘a0 A1 A2 A3 A4 A5h”. We will call “SomeFunction” with Keylndex = 3 and AuthMode ="
MIFARE AUTHENTI1A"

In this way authentication key is not exposed during communication with host.

Mifare Plus card using.

From firmware versions 5.0.1. to 5.0.28, and library versions to 5.0.18, AES keys read from reader
memory, and key index is 0 to 15.

From firmware versions 5.0.29, and library version from 5.0.19. for authentication modes
MIFARE_AUTHENT1A and MIFARE_AUTHENT1B, AES keys calculated from Crypto1 keys read
from Cryptol key space (index O - 31), and for authentication modes
MIFARE_PLUS_AES AUTHENT1A and MIFARE_PLUS_AES_AUTHENT1B, AES keys read
from AES keys space (index 0 - 15).

This mode is also using keys stored at reader's memory. Difference between this mode and RK is
that keys are used at predefined order.

In this mode, keys indexed from [0..15] are used as “Key A” for each corresponding sector while
keys indexed from [16..31] are used as “Key B” for each corresponding sector. That means Key
A for Sector 0 is Key indexed as [0] etc.

Brief example:
Sector 0 : Key A = Key [0], Key B = Key [16]

Digital Logic, www.d-logic.net Page 14

Sector 1 : Key A = Key [1l], Key B = Key [17]
Key [18]
Sector 3 : Key A = Key [3], Key B = Key [19]

Sector 2 : Key A

Key [2], Key B

Sector 15 : Key A = Key [15], Key B = Key [31]

Mifare Plus card using.

For firmware versions from 5.0.1. to 5.0.28 in MIFARE_AUTHENT1A and MIFARE_AUTHENT1B
mode, and from firmware version 5.0.29 and library version from 5.0.19 in
MIFARE_PLUS_AES AUTHENT1A and MIFARE_PLUS_AES_AUTHENT1B mode, uses AES
keys from AES keys space (index 0 - 15). In this mode, keys indexed from [0..7] are used as
“Key A” for each corresponding sector while keys indexed from [8..15] are used as “Key B” for
each corresponding sector.

Sector O : Key A = Key [0], Key B = Key [8]
Sector 1 : Key A = Key [1l], Key B = Key [9]
Sector 2 : Key A = Key [2], Key B = Key [10]
Sector 3 : Key A = Key [3], Key B = Key [11]
Sector 7 : Key A = Key [7], Key B = Key [15]
Sector 8 : Key A = Key [0], Key B = Key [8]

Sector 15 : Key A = Key [7], Key B = Key [15]
Sector 16 : Key A = Key [0], Key B = Key [8]

Sector 23 : Key A = Key [7], Key B = Key [15]
Sector 24 : Key A = Key [0], Key B = Key [8]

Sector 31 : Key A = Key [7], Key B = Key [15]
Sector 32 : Key A = Key [0], Key B = Key [8]

Sector 39 : Key A = Key [7], Key B = Key [15]

For firmware versions from 5.0.29 and library versions from 5.0.19 in MIFARE_AUTHENT1A and
MIFARE_AUTHENT1B, uses AES keys calculated from Crypto1 keys from Crypto1 keys space
(index - 31). Keys uses in same manner as for Mifare Classic card.

Digital Logic, www.d-logic.net Page 15

This mode is also using keys stored at reader's memory. Difference is that keys are used at
predefined order as even and odd keys.

In this mode, keys indexed with even numbers {0,2,4...30} are used as “Key A” for each
corresponding sector while keys indexed with odd numbers {1,3,5...31} are used as “Key B” for
each corresponding sector.

Brief example:

Sector O : Key A = Key [0], Key B = Key [1]
Sector 1 : Key A = Key [2], Key B = Key [3]
Sector 2 : Key A = Key [4], Key B = Key [5]
Sector 3 : Key A = Key [6], Key B = Key [7]

Sector 15 : Key A = Key [30], Key B = Key [31]

Mifare Plus card using.

For firmware versions from 5.0.1. to 5.0.28 in MIFARE_AUTHENT1A and MIFARE_AUTHENT1B
mode, and from firmware version 5.0.29 and library version from 5.0.19 in
MIFARE_PLUS_AES AUTHENT1A and MIFARE_PLUS_AES_AUTHENT1B mode, uses AES
keys from AES keys space (index 0 - 15). In this mode, keys indexed with even numbers
{0,2,4...14} are used as “Key A” for each corresponding sector while keys indexed with odd
numbers {1,3,5..15} are used as “Key B” for each corresponding sector.

Sector O : Key A = Key [0], Key B = Key [1]
Sector 1 : Key A = Key [2], Key B = Key [3]
Sector 2 : Key A = Key [4], Key B = Key [5]
Sector 3 : Key A = Key [6], Key B = Key [7]
Sector 7 : Key A = Key [14], Key B = Key [15]
Sector 8 : Key A = Key [0], Key B = Key [1]

Sector 15 : Key A = Key [14], Key B = Key [15]
Sector 16 : Key A = Key [0], Key B = Key [1]

Sector 23 : Key A = Key [14], Key B = Key [15]
Sector 24 : Key A = Key [0], Key B = Key [1]

Sector 31 : Key A = Key [14], Key B = Key [15]
Sector 32 : Key A = Key [0], Key B = Key [1]

Sector 39 : Key A = Key [14], Key B = Key [15]

For firmware versions from 5.0.29 and library versions from 5.0.19 in MIFARE_AUTHENT1A and
MIFARE_AUTHENT1B, uses AES keys calculated from Crypto1 keys from Crypto1 keys space
(index - 31). Keys uses in same manner as for Mifare Classic card.

Digital Logic, www.d-logic.net Page 16

NOTE: In all three above mentioned modes, when using Mifare Classic 4K cards, there are some
trade off.

Mifare Classic 4K have 40 sectors instead of 16 as Mifare Classic 1K. In such case, Key A for
Sector 0 is the same as Key A for Sector 16 etc. For the last 8 sectors (sectors 32 to 39) the
same readers keys are used that correspond to sectors 0 to 7 and 16 to 23.

Example:

Sector 16 : Key A, Key B = Sector [0] keys
Sector 17 : Key A, Key B = Sector [1] keys
Sector 18 : Key A, Key B = Sector [2] keys
Sector 31 : Key A, Key B = Sector [15] keys

Sector 32 : Key A, Key B = Sector [0] keys
Sector 33 : Key A, Key B = Sector [1] keys

Sector 39 : Key A, Key B = Sector [7] keys

In this case keys stored into reader are not in use. Key is passed as function parameter as it's
real value, like a pointer to array of bytes :“A0 A1 A2 A3 A4 A5h”.

For example, we will call “SomeFunction” with parameters “Key” and “AuthMode”, where “Key” is
a pointer to byte array which contains key value bytes.

This method is convenient for testing but we strongly discourage use of this method in real
production environments, since keys is exposed on “wire” during communication with host.

Mifare Plus card using.

For MIFARE_PLUS_AES AUTHENT1A and MIFARE_PLUS_AES_AUTHENT1B mode, 16 bytes
AES key provided to reader.

For firmware version from 5.0.29 in MIFARE_AUTHENT1A and MIFARE_AUTHENT1B, used
AES key calculated from 6 bytes Crypto1 key which provided to reader.

Other supported cad/tag types

Currently supported card/tag types in latest firmware revision are:
® Mifare Classic (and derivatives like Fudan FM11RF08)

Digital Logic, www.d-logic.net Page 17

Infineon SLE66R35

Mifare Ultralight (directly supported NFC Type2 Tag)

Mifare Ultralight C (directly supported NFC Type2 Tag)

NTAG 203, 210, 212, 213, 215, 216 (directly supported NFC Type2 Tag)
Mikron MIK640D (directly supported NFC Type2 Tag)

Other NFC Type2 Tag compatible card are supported as ‘T2T generic type’, calling
GetNfcT2tVersion () gives more data about tag.

Mifare Plus (in Mifare Classic compatibility mode SL1 and SL3 from library version 4.3.13
and uFR PLUS devices)

® Mifare DESFire EV1 (AES key, and other keys DES, 2K3DES, 3K3DES from library
version 5.0.14 and firmware version 5.0.25)

® Mifare DESFire EV2 (in EV1 compatibility mode)

Future firmware and library releases will support additional currently missing features and card
types.

Digital Logic, www.d-logic.net Page 18

API - Programming reference

Scope of this section is to show basic usage scenarios of uFR Series API library functions.

For code snippets and source code examples, please refer to “SDK” section at our download web
page.

Most examples are written in various programming languages including C/C++, C#.NET, C+
+.NET, VB.NET, Java, JavaScript, Python, Lazarus/Delphi.

Dynamic libraries are a part of source code example zip archives. Some libraries may be
obsolete due to time of writing of example.

Please be sure to always use the latest library revision from “Libraries” section at our download
web page.

Simply replace obsolete libraries with latest library revision to explore all features mentioned in
this document.

Digital Logic, www.d-logic.net Page 19

Communication and command flow

Communication with uFR Series reader (‘reader” in further text) is established via USB physical
communication link.

On top physical USB layer is FTDI’s direct access through D2XX drivers library.
uFR Series dynamic library (“uFCoder library” in further reading) is placed above D2XX library.

uFCoder library

FTDI D2XX driver library

USB Host Controller Driver

uFR Series device and host are in master-slave relation, where host represents master and
device is a slave.

Command flow is always initiated from master to slave and device is only responding to
commands.

Host Reader

<3 Response flow

The following sections will describe single reader usage, meaning that only one reader is
connected to host.

Connecting several readers to single host is possible and shall be described in separate section.

Digital Logic, www.d-logic.net Page 20

Important update:

From library version 4.01 and up, it is possible to establish communication with reader without
using FTDI's D2XX driver by calling ReaderOpenEx function. Library can talk to reader via COM
port (physical or virtual) without implementing FTDI’s calls. However, this approach is not fast as
with use of D2XX drivers but gives much more flexibility to users who had to use COM protocol
only, now they can use whole API set of functions via COM port.

uFCoder library

COM port (physical or virtual)

Digital Logic, www.d-logic.net Page 21

To establish communication with reader, there must be no other processes to disturbing this
communication, which means that only one process or application can have open communication
link with reader.

To establish communication link, ReaderOpen () command must be sent.
After successful link opening, all other library functions can be used.

At the end of use, link must be closed by ReaderClose () command, which is usually at
application exit or process end.

nlla
L 3

Digital Logic, www.d-logic.net Page 22

Program flow — polling

In many cases, there is a need to constantly examine some state or check for some events, like
for card presence or similar. That is also known as “Polling Loop”.

In polling loop check is performed several times in second and number of check may vary.
However, good practice is not to exceed 10 - 15 checks per second.

Almost all uFCoder library functions return Zero value if function call was successful and error
code if not.

Result =0 Command Result =0
Result ? v

Process data

‘Break’
exit loop

Digital Logic, www.d-logic.net Page 23

API - descriptions

Reader and library related functions

As mentioned earlier, uFCoder function call returns (in most cases) integer value as result of
function operation. For possible values please refer to table ERR_CODES in Appendix: ERROR

CODES (DL_STATUS result).

Exception from this rule are some functions with return parameters “c_string” which is a pointer to
array of char (“typedef const char * ¢_string”).

Here is a list of reader and library related functions with return types:

Reader and library functions
Return Type Function name
UFR_STATUS ReaderOpen
UFR_STATUS ReaderOpenEx
UFR STATUS ReaderOpen uFROnline
UFR_STATUS ReaderReset
UFR_STATUS ReaderClose
UFR_STATUS ReaderstillConnected
UFR_STATUS GetReaderType
UFR_STATUS GetReaderSerialNumber
UFR STATUS GetReaderHardwareVersion
UFR_STATUS GetReaderFirmwareVersion
UFR_STATUS GetBuildNumber
UFR_STATUS GetReaderSerialDescription
UFR_STATUS ChangeReaderPassword
UFR_STATUS ReaderKeyWrite
UFR STATUS ReaderKeysLock
UFR_STATUS ReaderKeysUnlock
UFR_STATUS ReadUserData
UFR_STATUS WriteUserData
UFR_STATUS UfrEnterSleepMode
UFR_STATUS UfrLeaveSleepMode
UFR STATUS AutoSleepSet
UFR_STATUS AutoSleepGet
UFR_STATUS SetSpeedPermanently
UFR STATUS GetSpeedParameters
UFR_STATUS SetAsyncCardIdSendConfig
UFR_STATUS GetAsyncCardIdSendConfig
UFR_STATUS ReaderUISignal
UFR_STATUS UfrRedLightControl
UFR_STATUS SetDisplayData**

Digital Logic, www.d-logic.net

Page 24

UFR_STATUS SetDisplayIntensity**
UFR_STATUS GetDisplayIntensity**
UFR_STATUS SetSpeakerFrequency
uint32 t GetDllVersion

c _string GetDllVersionStr
c_string UFR_STATUS2String
c_string GetReaderDescription
** — RFU(reserved for future use)
ReaderOpen

Function description
Open reader communication port for all yFR devices. You can also use this function to open
communication with yFR Online devices.

Using ReaderOpen to open communication with yFR Online devices:

If you have only one reader attached to your PC, it will open that reader serial port on 1Mbit/s, or if
you have only one reader attached to another power supply (not your PC) it will open that reader
based on it's working mode (TCP or UDP). If you have more than one yFR Online device,
ReaderOpen function will open the first one found, for opening another device, use
ReaderOpenEXx instead.

Function declaration (C language)
UFR_STATUS ReaderOpen (void)
No parameters required.

ReaderOpenByType

Function description

Opens a port of connected reader using readers family type. Useful for speed up opening for non
uFR basic reader type (e.g. BaseHD with uFR support). Do not use this function for opening
communication with yFR Online devices.

Function declaration (C language)
UFR_STATUS ReaderOpenByType (uint32_ t reader_ type);

Parameters

0 - auto, same as call ReaderOpen()
1 - uFR type (1 Mbps)

2 - UFR RS232 type (115200 bps)

3 - BASE HD uFR type (250 Kbps)

Digital Logic, www.d-logic.net Page 25

ReaderOpenEx

Function description
Open reader communication port in several different ways. Can be used for establishing
communication with COM port too. There is enumeration in uFCoder.h file called
E_READER_TYPE with values:

enum E READER TYPE
{
AUTO = O,
UFR_TYPE = 1,
UFR RS232 TYPE = 2,
BASEHD UFR TYPE = 3,
UFR_ONLINE TYPE = 4
bi

Values in this enumeration you can pass into ReaderOpenEx function as reader type
parameter.

For example, if you pass 4 as reader type it will only work with yFR Online Series devices,
and then as port name Yyou can pass devices IP address or serial number (ex: “192.168.1.123”
or “ON101390"), for port interface you can pass ‘U’ for UDP, ‘T’ for TCP or 0. If you pass 0,
it will automatically search for reader working mode (UDP or TCP) and open it. For argument you
can pass 0 or yFR Nano device serial number to open it on 1Mbit/s (ex: “UN123456").

Examples:

ReaderOpenEx(1, “COM1”, 0, 0) This example will open communication with
MFR device attached to COM1 port on 1Mbit/s

ReaderOpenEx(1, 0, 0, 0) This example will automatically find COM port
and open communication with first yFR device
on 1Mbit/s

ReaderOpenEx(2, 0, 0, 0) This example will automatically find COM port
and open communication with first yFR RS232
device on 115200 bit/s

ReaderOpenEx(4, “ON123456", ‘U’, 0) This example will open communication with
MFR Online reader with serial number
ON123456 on UDP protocol.

Digital Logic, www.d-logic.net Page 26

ReaderOpenEx(4, “ON123456", ‘T’, 0)

This example will open communication with
MFR Online reader with serial number
ON123456 on TCP protocol.

ReaderOpenEx(4, “192.168.1.123”, ‘U’, 0)

This example will open communication with
MFR Online reader with IP address
192.168.1.123 on UDP protocol.

ReaderOpenEx(4, “192.168.1.123, ‘T’, 0)

This will open communication with yFR Online
reader with IP address 192.168.1.123 on TCP
protocol.

ReaderOpenEx(4, “192.168.1.123", 0, 0)

It will open communication with yFR Online
reader with IP address 192.168.1.123 based
on its working protocol (UDP or TCP), because
we passed 0 as port _interface

ReaderOpenEx(4, “ON123456”, 0, 0)

It will open communication with yFR Online
reader with serial number ON123456 based on
its working protocol (UDP or TCP), because we
passed 0 as port interface

ReaderOpenEx(4, “ON123456", 0O,
“UN654321")

It will open communication with yFR Nano
reader on 1Mbit/s with serial number
UN654321 which is attached to yFR Online
device with serial number ON123456

ReaderOpenEx(4, “192.168.1.123”, 0,
“UN654321)

It will open communication with yFR Nano
reader on 1Mbit/s with serial number
UN654321 which is attached to yFR Online
device with IP address 192.168.1.123

Function declaration (C language)

Digital Logic, www.d-logic.net

Page 27

UFR_STATUS ReaderOpenEx (uint32 t reader_type,
c_string port_ name,
uint32_t port_interface,
void *argq) ;

Parameters

Digital Logic, www.d-logic.net Page 28

reader type

0 auto - same as call ReaderOpen()
1 : uFR type (1 Mbps)
2 uFR RS232 type (115200 bps)

3 : BASE HD uFR type (250 Kbps)

When uFR Online reader works in BT serial mode or transparent mode,
reader_type must be set to 2.

port_ name

is c-string type used to open port by given serial name. If you provide
NULL or empty string that is AUTO MODE which calls ReaderOpenEx()
and test all available ports on the system.

serial port name, identifier, like
"COM3" on Windows or
"/dev/ttyS0" on Linux or
"/dev/tty.serial1" on (O] X

or if you select FTDI, reader serial number like "UN123456", if reader
have integrated FTDI interface

When the UDP interface type is selected, port_ name must be provided
in “address:port” format. Like "192.168.1.162:8881" IP for UDP I/F

port_interface

type of communication interfaces (define interface which we use while
connecting to the printer), supported value's:
0 : auto - first try FTDI than serial if port name is not defined
1 : try serial / virtual COM port / interfaces

2 : try only FTDI communication interfaces

10 : try to open Digital Logic Shields with RS232 uFReader on Raspberry
Pi (serial interfaces with GPIO reset)

84 ('T") : TCP/IP interface

85 ('U') : UDP interface

102 ('B"): BT serial interface. Android library only.

114 ('L'): BLE interface. Android library only.

When uFR Online reader works in BT serial mode, port_interface must
be set to 0 (Except Android).

arg

C-string with additional settings delimited with new lines.
Settings C-string constant:

“‘UNIT_OPEN_RESET DISABLE” : do not reset the reader when
opening

“‘UNIT_OPEN_RESET_ FORCE” : force reset the reader when opening
‘UNIT_OPEN_RESET_ONLY”: only resets the device and will not send

additional commands that are used when establishing communication
with the reader.

"READER_ACTIVE_ON_RTS _LOW" : (default) Reset the reader when
RTS is high - the reader works when RTS is low

Digital Logic, www.d-logic.net Page 29

"READER_ACTIVE_ON_RTS_HIGH" : Reset the reader when RTS is
low - the reader works when RTS is high

"RTS_ALWAYS_HIGH" : not implemented yet

"RTS_ALWAYS_ LOW" : not implemented yet
"RTS_DISCONNECTED" : disconnect RTS (RTS is not initiate nor
use)

When uFR Online reader works in BT serial mode or transparent mode,
arg must be set to “UNIT_OPEN_RESET_DISABLE”.

Custom baud rates from library version 5.0.28. For all RS232 devices
and USB devices from firmware version 5.0.31

"BR_1000000" : 1 Mbps
"BR_115200" : 115200 bps
"BR_250000" : 250000 bps
"BR_9600" : 9600 bps
"BR_19200" : 19200 bps
"BR_38400" : 38400 bps
"BR_57600" : 57600 bps
"BR_230400" : 234000 bps
"BR_460800" : 460800 bps
"BR_500000" : 500000 bps

ReaderOpen_uFROnline

Function description
Opens uFR Online device by serial number. Function will open communication (UDP or TCP) with
device based on its working mode. If function cannot find given serial number, it will open
communication on serial port with 1Mbit/s.

Function declaration (C language)
UFR_STATUS ReaderOpen_ uFROnline (c_string serial number)

Parameter

Pointer to const char array (c_string) containing devices serial number (ex.

serial number
- “ON1013907).

Digital Logic, www.d-logic.net Page 30

ReaderReset

Function description
Physical reset of reader communication port.

Function declaration (C language)
UFR_STATUS ReaderReset (void)

No parameters required.

ReaderClose

Function description
Close reader communication port.

Function declaration (C language)
UFR_STATUS ReaderClose (void)
No parameters required.

ReaderStillConnected

Function description

Retrieve info if reader is still connected to host.

Function declaration (C language)

UFR_STATUS ReaderStillConnected(uint32_t *connected)
Parameter

connected pointer to connected variable

“connected” as result:

>0 Reader is connected on system

=0 Reader is not connected on system anymore (or closed)

<0 other error

‘connected” - Pointer to unsigned int type variable 32 bit long, where the
information about readers availability is written. If the reader is connected
on system, function store 1 (true) otherwise, on some error, store zero in
that variable.

Digital Logic, www.d-logic.net Page 31

GetReaderType

Function description

Returns reader type as a pointer to 4 byte value.

Function declaration (C language)
UFR_STATUS GetReaderType (uint32_t *lpulReaderType)

Parameter

lpulReaderType

pointer to 1pulReaderType variable.

“1lpulReaderType” as result — please refer to Appendix: DLogic reader
type enumeration.

E.g. for yFR Nano Classic readers this value is 0xD1180022.

GetReaderSerialNumber

Function description

Returns reader serial number as a pointer to 4 byte value.

Function declaration (C language)
UFR_STATUS GetReaderSerialNumber (uint32_ t *lpulSerialNumber)

Parameter

lpulSerialNumber

pointer to 1pulsSerialNumber variable.
“lpulserialNumber “ as result holds 4 byte serial number value.

GetReaderHardwareVersion

Function description

Returns reader hardware version as two byte representation of higher and lower byte.

Function declaration (C language)

Digital Logic, www.d-logic.net Page 32

UFR_STATUS GetReaderHardwareVersion(uint8 t *version major,
uint8 t *version minor);

Parameters

version major | Pointerto version major variable

version minor | Pointer to version minor variable

GetReaderFirmwareVersion

Function description
Returns reader firmware version as two byte representation of higher and lower byte.
Function declaration (C language)

UFR_STATUS GetReaderFirmwareVersion(uint8_t *version major,

uint8 t *version minor);

Parameters

version major | Pointerto version major variable

version minor | Pointer to version minor variable

GetBuildNumber

Function description

Returns reader firmware build version as one byte representation.
Function declaration (C language)

UFR_STATUS GetBuildNumber (uint8_ t *build)

Parameter

build pointer to build variable

Digital Logic, www.d-logic.net Page 33

GetReaderSerialDescription

Function description

Returns reader’s descriptive name as a row of 8 chars.

Function declaration (C language)

UFR_STATUS GetReaderSerialDescription(uint8_ t pSerialDescription[8])
Parameter

pSerialDescription[8] pointer to pSerialDescription array

ChangeReaderPassword

Function description
This function is used in Common, Advance and Access Control set of functions.
It defines/changes password which | used for:
® Locking/unlocking keys stored into reader
® Setting date/time of RTC
Function declaration (C language)

UFR_STATUS ChangeReaderPassword(uint8 t *old password,
uint8_t *new_password)

Parameters
old password pointer to the 8 bytes array containing current password
new password pointer to the 8 bytes array containing new password
ReaderKeyWrite

Function description

Store a new key or change existing key under provided index parameter.The keys are in a
special area in EEPROM that can not be read anymore which gains protection.

Function declaration (C language)

Digital Logic, www.d-logic.net Page 34

UFR_STATUS ReaderKeyWrite (const uint8_ t *aucKey,
uint8 t ucKeyIndex)

Parameters

aucKey Pointer to an array of 6 bytes containing the key. Default key
values are always “FF FF FF FF FF FF” hex.

ucKeyIndex | key Index. Possible values are 0 to 31.

ReaderKeysLock

Function description

Lock reader’s keys to prevent further changing.

Function declaration (C language)

UFR_STATUS ReaderKeysLock (const uint8_ t *password) ;

Parameter

password pointer to the 8 bytes array containing valid password.

ReaderKeysUnlock

Function description

Unlock reader’s keys if they are locked with previous function.

The factory setting is that reader keys are unlocked.

Function declaration (C language)

UFR_STATUS ReaderKeysUnlock (const uint8_t *password) ;

Parameter

password pointer to the 8 bytes array containing valid password.

ReaderSoftRestart

Function description
This function is used to restart the reader by software. It sets all readers parameters to default
values and close RF field which resets all the cards in the field.

Digital Logic, www.d-logic.net Page 35

Function declaration (C language)

UFR_STATUS ReaderSoftRestart(void);
No parameters required.

ReadUserData

Function description

Read user data written in device
User data is 16 byte long.

Function declaration (C language)
UFR_STATUS ReadUserData (uint8_t *aucData)
Parameter

NV

memory.

aucData pointer to 16 byte array containing user data.

WriteUserData

Function description

Write user data into device’s NV memory. User data is 16 byte long.
Function declaration (C language)

UFR_STATUS WriteUserData(uint8 t *aucData)
Parameter

aucData pointer to 16 byte array containing user data.

UfrEnterSleepMode

Function description
Turn device into Sleep mode.

Function declaration (C language)
UFR_STATUS UfrEnterSleepMode (void)

No parameters used.

Digital Logic, www.d-logic.net

Page 36

UfrLeaveSleepMode

Function description

Wake up device from Sleep mode.

Function declaration (C language)
UFR_STATUS UfrLeaveSleepMode (void)
No parameters used.

AutoSleepSet

Function description

Turn device into Sleep mode after certain amount of time.
Function declaration (C language)

UFR_STATUS AutoSleepSet(uint8_t seconds_wait)

Parameter

seconds_wait variable holding value of seconds to wait before enter into sleep.
If parameter is 0x00, AutoSleep feature is turned off (default state).

AutoSleepGet

Function description

Get status of AutoSleep mode.

Function declaration (C language)

UFR_STATUS AutoSleepGet (uint8_ t seconds_wait)
Parameter

seconds_wait variable holding value of seconds to wait before enter into sleep.
If parameter is 0x00, AutoSleep feature is turned off (default state).

SetSpeedPermanently

Function description

This function is used for setting communication speed between reader and 1SO144443-4 cards.
For other card types, default speed of 106 kbps is in use.

Digital Logic, www.d-logic.net Page 37

Function declaration (C language)
UFR_STATUS SetSpeedPermanently (uint8 t tx speed,

uint8_ t rx speed)

Parameters
tx speed setup value for transmit speed
rx speed setup value for receive speed

Valid speed setup values are:

Const Configured speed
0 106 kbps (default)
1 212 kbps
2 424 kbps

On some reader types maximum rx_speed is 212 kbps. If you try to set higher speed than
possible, reader will automatically set the maximum possible speed.

GetSpeedParameters

Function description
Returns baud rate configured with previous function.
Function declaration (C language)

UFR_STATUS GetSpeedParameters(uint8 t *tx speed,
uint8 t *rx speed)

Parameters
tx speed pointer to variable, returns configured value for transmit speed
rx speed pointer to variable, returns configured value for receive speed

Digital Logic, www.d-logic.net Page 38

SetAsyncCardldSendConfig

Function description

This function is used for “Asynchronous UID sending” feature. Returned string contains
hexadecimal notation of card ID with one mandatory suffix character and one optional prefix
character.

Example:

Card ID is 0xA103C256, prefix is 0x58 ('X"), suffix is 0x59 ("Y")
Returned string is “XA103C256Y”

Function sets configuration parameters for this feature.
Function declaration (C language)

UFR_STATUS SetAsyncCardIdSendConfig (uint8_ t send enable,
uint8 t prefix enable,
uint8 t prefix,
uint8 t suffix,
uint8 t send removed enable,
uint32_t async_baud_rate) ;

Parameters
send_enable turn feature on/off (0/1)
prefix_enable use prefix or not (0/1)
prefix prefix character
suffix suffix character

send _removed_enabl Turn feature on/off (0/1).

e If feature is enabled then Asynchronous UID will
also be sent when removing a card from the reader
field.

async_baud_rate baud rate value (e.g. 9600)

GetAsyncCardldSendConfig

Function description
Returns info about parameters configured with previous function.

Digital Logic, www.d-logic.net Page 39

Function declaration (C language)
UFR_STATUS GetAsyncCardIdSendConfig (uint8_ t *send enable,

Parameters

uint8 t *prefix enable,
uint8 t *prefix,

uint8 t *suffix,

uint8 t *send removed enable,
uint32 t *async_baud_rate);

send enable

pointer, if feature is on/off (0/1)

prefix enable

pointer, if prefix is used or not (0/1)

prefix

pointer to variable holding prefix character

suffix

pointer to variable holding suffix character

send _removed _enable

Pointer. If value is 0 then feature is off. Otherwise,
feature is on.
If feature is enabled then Asynchronous UID is sent
when the card is removed from the reader field.

async_baud rate

pointer to variable holding configured baud rate

SetAsyncCardldSendConfigEx

Function description

Function sets the parameters of card ID sending.

Function declaration (C language)

UFR_STATUS SetAsyncCardIdSendConfigEx (
uint8 t send enable,
uint8 t prefix enable,

uint8 t prefix,
uint8 t suffix,

uint8 t send removed enable,
uint8 t reverse_byte_ order,
uint8 t decimal_ representation,
uint32 t async_baud rate);

Parameters

send;gnable

turn feature on/off (0/1)

prefix enable

use prefix or not (0/1)

Digital Logic, www.d-logic.net

Page 40

prefix

prefix character

suffix

suffix character

send removed enable

Turn feature on/off (0/1).

If feature is enabled then Asynchronous UID will also be sent
when removing a card from the reader field.

reverse_ byte order

Turn feature on/off (0/1).

If feature is disabled then the order of bytes (UID) will be as on
card.

If feature is enabled then the order of bytes will be reversed
then the card’s order of bytes.

decimal representation

Turn feature on/off (0/1).

If feature is enabled then the UID will be presented as a
decimal number.

If feature is disabled then the UID will be presented as a
hexadecimal number

async_baud_rate

baud rate value (e.g. 9600)

GetAsyncCardldSendConfigEx

Function description

Function returns the parameters of card ID sending.

Function declaration (C language)

UFR_STATUS
uint8 t
uint8_t
uint8 t
uint8 t
uint8_t
uint8 t
uint8 t

GetAsyncCardIdSendConfigEx (
*send enable,

*prefix enable,

*prefix,

*suffix,

*send removed _enable,
*reverse_byte_ order,
*decimal representation,

uint32_t *async_baud rate);

Parameters

send_enable

pointer to the sending enable flag

prefix enable

pointer to the prefix existing flag

Digital Logic, www.d-logic.net

Page 41

prefix pointer to prefix character

suffix pointer to suffix character

send_removed enable pointer to flag

reverse byte order pointer to flag

decimal representation pointer to flag

async baud rate pointer to baud rate variable

ReaderUISignal

Function description

This function turns sound and light reader signals. Sound signals are performed by reader’s
buzzer and light signals are performed by reader’s LEDs.

There are predefined signal values for sound and light:

light_si.gnal_mode beep signal mode:
0 None 0 None
1 Long Green 1 Short
5 Long Red 5 Long
3 Alternation 3 Double Short
4 Flash 4 Triple Short
5 Triplet Melody

Function declaration (C language)

UFR_STATUS ReaderUISignal (uint8_ t light signal mode,
uint8 t beep signal mode)

Parameters

Digital Logic, www.d-logic.net Page 42

light_signal mode value from table (0 - 4)

beep signal mode | Value fromtable (0 -5)

UfrRedLightControl

Function description

This function turns Red LED only.
If “light_status” value is 1, red light will be constantly turned on until receive “light_status “ value
0.

Function declaration (C language)
UFR_STATUS UfrRedLightControl (uint8 t light status)

Parameter

light status |ValueOor1

SetSpeakerFrequency

Function description
This function plays constant sound of “frequency” Hertz.

Function declaration (C language)
UFR_STATUS SetSpeakerFrequency (uintl6é_t frequency)

Parameter

frequency frequency in Hz

To stop playing sound, send 0 value for “frequency”.

SetUartSpeed

From version 5.0.28

Function description

This function sets communication speed (UART baud rate). Allowable values of baud rate are:
9600, 19200, 38400, 57600, 115200, 230400, 460800, 500000, and 1000000 bps. All RS232
devices are supported, and USB devices (Nano FR, Classic) from firmware version 5.0.31.

Digital Logic, www.d-logic.net Page 43

Function declaration (C language)
UFR_STATUS SetUartSpeed(uint32_t baud_rate);

Parameter

UART baud rate

baud rate

SetDefaultUartSpeed

From version 5.0.28

Function description
This function returns communication speed (UART baud rate) to default value. For RS23 devices
default communication speed is 115200 bps, and for USB devices is 1000000 bps.

For RS232 devices from version 5.0.1 (plus devices), and for USB devices from version 5.0.31.

Function declaration (C language)

UFR_STATUS SetDefaultUartSpeed(uint8 t reader_ type,
uint8 t comm type,
c_string port name) ;

Parameters

reader type 1-USB

2 - RS232
comm_type 1 - COM port
2-FTDI
port name If comm_type is FTDI enter empty string

If comm_type is COM port

Windows “COMx”

Linux “/dev/ttyUSBX”

Mac OS “/dev/tty.usbserial-xxxxxxxx”

ReaderSoundVolume

From version 5.0.68.

Function description
Function sets the duty cycle ratio of the sound signal. Value is in percent (0 - 100%). Default value
is 50%, and this value will be set after the reset of the reader, without using this function.

Function declaration (C language)
UFR_STATUS ReaderSoundVolume (uint8_ t sound volume) ;

Digital Logic, www.d-logic.net Page 44

Parameter

sound_volume | volume in percent 0 - 100 %

If you want to communicate and use multiple readers from an application, you have to follow the
initial procedure for enumerating uFR compatible devices and getting their handles. First call
ReaderList_UpdateAndGetCount() to prepare an internal list of connected devices and then call
ReaderList_Getlnformation() several times to get information from every reader.

Handle is used to identify certain readers when calling multi-functions (with suffix M).

ReaderList_UpdateAndGetCount

Function description
This is the first function in the order for execution for the multi-reader support.

The function prepares the list of connected uF-readers to the system and returns the number of
list items - number of connected uFR devices.

ReaderList_UpdateAndGetCount() scans all communication ports for compatible devices, probes
open readers if still connected, if not close and mark their handles for deletion. If some device is
disconnected from the system this function should remove its handle.

Function declaration (C language)
UFR_STATUS ReaderList UpdateAndGetCount (int32_t * NumberOfDevices) ;

Parameters

NumberOfDevices | how many compatible devices is connected to the system

Returns: status of execution

ReaderList_Getinformation

Function description
Function for getting all relevant information about connected readers.

You must call the function as many times as there are detected readers. E.g. If you have tree
connected readers, detected by ReaderList_UpdateAndGetCount(), you should call this function
tree times.

Digital Logic, www.d-logic.net Page 45

Function declaration (C language)

UFR_STATUS ReaderList GetInformation(
UFR_HANDLE *DeviceHandle,
c_string *DeviceSerialNumber,

int *DeviceType,

int *DeviceFWver,

int *DeviceCommID,int *DeviceCommSpeed,
c_string *DeviceCommFTDISerial,
c_string *DeviceCommFTDIDescription,
int *DevicelsOpened,

int *DeviceStatus) ;

Parameters

DeviceHandle

assigned Handle to the uFR reader - pointer for general
purpose (void * type in C)

DeviceSerialNumber

device serial number, pointer to static reserved
information in library (no need to reserve memory space)

DeviceType device identification in Digital Logic AlS database
DeviceFWver version of firmware

DeviceCommID device identification number (master)
DeviceCommSpeed communication speed in bps

DeviceCommFTDISerial

FTDI COM port identification, pointer to static reserved
information in library (no need to reserve memory space)

DeviceCommFTDIDescription

FTDI COM port description, pointer to static reserved
information in library (no need to reserve memory space)

DeviceIsOpened

is Device opened - 0 not opened, other value is opened

DeviceStatus

actual device status

Digital Logic, www.d-logic.net

Page 46

ReaderList_Destroy

Function description

Force handle deletion when you identify that the reader is no longer connected, and want to
release the handle immediately. If the handle exists in the list of opened devices, function would
try to close communication port and destroy the handle.

When uF-reader is disconnected ReaderList UpdateAndGetCount() will do that (destroy)
automatically in next execution.

Function declaration (C language)
UFR_STATUS ReaderList Destroy (UFR_HANDLE DeviceHandle) ;

Parameter

DeviceHandle | the handle that will be destroyed

Example (in C):

Digital Logic, www.d-logic.net Page 47

int main(void)
{
puts (GetDllVersionStr()) ;

UFR_STATUS status;
int32_t NumberOfDevices;

status = ReaderList UpdateAndGetCount (&NumberOfDevices) ;
if (status)
{
// TODO: check error
printf ("ReaderList UpdateAndGetCount(): error= %$s\n",
UFR_ Status2String(status));

return EXIT_SUCCESS;
}

printf ("ReaderList UpdateAndGetCount () : NumberOfDevices= $d\
n" ,
NumberOfDevices) ;

for (int i = 0; i < NumberOfDevices; ++i)
{
UFR_HANDLE DeviceHandle;
c_string DeviceSerialNumber;
int DeviceType;
int DeviceFWver;
int DeviceCommID;
int DeviceCommSpeed;
c_string DeviceCommFTDISerial;
c_string DeviceCommFTDIDescription;
int DeviceIsOpened;
int DeviceStatus;

status = ReaderList GetInformation (&DeviceHandle,
&DeviceSerialNumber, &DeviceType, &DeviceFWver,
&DeviceCommID, &DeviceCommSpeed,
&DeviceCommFTDISerial,
&DeviceCommFTDIDescription,
&DevicelsOpened, &DeviceStatus) ;

printf ("{%d/%d} DeviceHandle= %p, DeviceSerialNumber=

$s, "

"DeviceType= %X, DeviceFWver= %d, "

"DeviceCommID= %$d, DeviceCommSpeed= %d, "

"\n\t\t"

"DeviceCommFTDISerial= %s, DeviceCommFTDIDescription=
$s, "

" \n\t\t"

Digital Logic, www.d-logic.net Page 48

"DeviceIsOpened= %d, DeviceStatus= %d\n", i + 1,

NumberOfDevices, DeviceHandle, DeviceSerialNumber,

DeviceType, DeviceFWver, DeviceCommID,
DeviceCommSpeed,

DeviceCommFTDISerial, DeviceCommFTDIDescription,

DeviceIsOpened, DeviceStatus) ;

puts (GetReaderDescriptionM (DeviceHandle)) ;

}
return EXIT SUCCESS;

GetDIIVersionStr

Function description

This function returns library version as string.
Function declaration (C language)
c_string GetDllVersionStr (void)

No parameters used.

GetDIIVersion

Function description
This function returns library version as number.

Function declaration (C language)
uint32_ t GetDllVersion(void) ;
Returns compact version number, in little-endian format

Low Byte: Major version number
High Byte: Minor version number
Upper byte: Build number

Master Byte: reserved -

Digital Logic, www.d-logic.net Page 49

UFR_STATUS2String

Function description

This is helper library function. Returns DL_STATUS result code as readable descriptive data.
Return type is string. For DL_STATUS enumeration, please refer to Appendix: ERROR CODES
(DL_STATUS result).

Function declaration (C language)
c_string UFR_Status2String(const UFR_STATUS status)

GetReaderDescription

Function description

This function returns reader’s descriptive name. Return type is string. No parameters required.
Function declaration (C language)

c_string GetReaderDescription (void)

No parameters used.

Card/tag related commands
General purpose card related commands

Following functions are applicable to all card types.

UFR STATUS GetDlogicCardType
UFR STATUS | GetCardId

UFR STATUS GetCardIdEx

UFR STATUS GetLastCardIdEx

GetDlogicCardType

Function description

This function returns card type according to DlogicCardType enumeration. For details, please
refer to Appendix: DLogic CardType enumeration.

If the card type is not supported, function return the 1pucCcardType value equal to zero :

TAG UNKNOWN = 0x00

Digital Logic, www.d-logic.net Page 50

Function declaration (C language)
UFR_STATUS GetDlogicCardType (uint8_ t *1lpucCardType)

Parameter

lpucCardType pointer to 1pucCardType variable. Variable 1pucCardType holds returned
value of actual card type present in RF field.

GetNfcT2TVersion

Function description

This function returns 8 bytes of the T2T version. All modern T2T chips support this functionality
and have in common a total of 8 byte long version response. This function is primarily intended to
use with NFC_T2T_GENERIC tags (i.e. tags which return 0x0C in the *IpucCardType parameter
of the GetDlogicCardType()).

Function declaration (C language)
UFR_STATUS GetNfcT2TVersion(uint8_ t lpucVersionResponse[8])

Parameter

lpucVersionResponse[8] array containing 8 bytes which will receive raw T2T version.

NfcT2TSafeConvertVersion

Function description

This is a helper function for converting raw array of 8 bytes received by calling
GetNfcT2TVersion (). All modern T2T chips having same or very similar structure of the T2T
version data represented in the uFR API by the structure type t2t version_t:

typedef struct t2t _version_struct {
uint8_ t header;
uint8 t vendor_ id;
uint8 t product_type;
uint8 t product subtype;
uint8 t major product version;
uint8 t minor_ product version;
uint8 t storage_size;
uint8 t protocol type;

} t2t_version_t;

This function is primarily intended to use with NFC_T2T_GENERIC tags (i.e. tags which return

Digital Logic, www.d-logic.net Page 51

0x0C in the *IpucCardType parameter of the GetDlogicCardType ()). Conversion done by this
function is "alignment safe".

Function declaration (C language)

void NfcT2TSafeConvertVersion(t2t_version_ t *version,
const uint8 t *version_record);

Parameters

version pointer to the structure of the t2t_version_t type which will receive
converted T2T version

version_record pointer to array containing 8 bytes of the raw T2T version acquired using
function GetNfcT2TVersion ()

GetCardld

Function description

Returns card UID as a 4-byte array. This function is deprecated and used only for backward
compatibility with older firmware versions (before v2.0). We strongly discourage use of this
function. This function can’t successfully handle 7 byte UIDS.

Function declaration (C language)

UFR_STATUS GetCardId(uint8 t *1lpucCardType,
uint32_ t *lpulCardSerial)

Parameters

lpucCardType returns pointer to variable which holds card type according to SAK

lpulCardSerial | returns pointer to array of card UID bytes, 4 bytes long ONLY

GetCardIdEx

Function description
This function returns UID of card actually present in RF field of reader. It can handle all three
known types : 4, 7 and 10 byte long UIDs.

This function is recommended for use instead of GetCardld.

Digital Logic, www.d-logic.net Page 52

Function declaration (C language)

UFR_STATUS GetCardIdEx(uint8 t *lpucSak,
uint8 t *aucUid,
uint8 t *1lpucUidSize);

Parameters
lpucSak returns pointer to variable which holds card type according to
SAK
aucUid returns pointer to array of card UID bytes, variable length
lpucUidSize returns pointer to variable holding information about UID length

GetlLastCardIdEx

Function description

This function returns UID of last card which was present in RF field of reader. It can handle all
three known types : 4, 7 and 10 byte long UIDs. Difference with GetCardIdEx is that card does not
be in RF field mandatory, UID value is stored in temporary memory area.

Function declaration (C language)

UFR_STATUS GetLastCardIdEx (uint8_ t *lpucSak,
uint8 t *aucUid,
uint8 t *1lpucUidSize) ;

Parameters :
lpucSak returns pointer to variable which holds card type according to
SAK
aucUid returns pointer to array of card UID bytes, variable length

lpucUidSize returns pointer to variable holding information about UID
length

COMTransceive

Function description

As of uFCoder library v5.0.71 users can use COM protocol via uFCoder library by calling this
method. It handles transmission of CMD and CMD_EXT commands and it handles RSP and
RSP_EXT packets that are a response to the COM protocol commands.

Digital Logic, www.d-logic.net Page 53

Function declaration (C language)

UFR_STATUS COMTransceive (uint8 t* cmd, uint32_t cmd length,
uint8 t* cmd ext, uint32_t cmd ext length,
uint8 t* rsp, uint32 t* rsp length,
uint8 t* rsp ext, uint32_ t* rsp ext length)

Parameters :
cmd Pointer to array of CMD bytes for transmission. Last byte
is the checksum.
cmd_length Length of the CMD array, always setitto 7.
cmd _ext

Pointer to array of CMD_EXT bytes for transmission. Last
byte is the checksum.

cmd_ext_length |t ho |ength is greater than 0, CMD_EXT bytes will be
transmitted. Otherwise they will not. This is the size of
CMD_EXT array that will be sent to the reader.

£sp Pointer to array of bytes containing RSP bytes.

rsp_length Pointer to a variable holding how many RSP bytes have
been received.

rsp_ext

Pointer to array of bytes containing RSP bytes. If greater
than zero, RSP_EXT exists.

rsp_ext_length Pointer to a variable holding how many RSP_EXT bytes

have been received.

Functions specific to Mifare Classic ® family of cards (Classic 1K and 4K). All functions are
dedicated for use with Mifare Classic ® cards. However, some functions can be used with other
card types, mostly in cases of direct addressing scheme and those functions will be highlighted in
further text. There are few types of following functions:

d) Block manipulation functions — direct and indirect addressing

Functions for manipulating data in blocks of 16 byte according to Mifare Classic ®
memory structure organization.

e) Value Block manipulation functions — direct and indirect addressing

Functions for manipulating value blocks byte according to Mifare Classic ® memory
structure organization.

f) Linear data manipulation functions

Functions for manipulating data of Mifare Classic ® memory structure as a Linear
data space.

Digital Logic, www.d-logic.net Page 54

Function’s variations

All listed functions have 4 variations according to key mode, as explained earlier in chapter
“Mifare Classic authentication modes and usage of keys”. Let’s take “BlockRead” function as example:

BlockRead RK mode
BlockRead AKMI1 AKM1 mode
BlockRead AKM2 AKMZ2 mode
BlockRead PK PK mode

Direct or Indirect addressing

In general, when speaking about direct and indirect addressing functions, both function types
does the same thing. Main difference is in a way of block addressing.

Direct addressing functions use absolute value for Block address according to Mifare Classic
memory map, where real block address (0-63) corresponds to function parameter value.

Indirect addressing functions use Block-In-Sector approach. Each Sector have 4 blocks (or more,
for higher Sectors of the Mifare Classic 4K cards), so function always need two parameters: real
Sector address and relative Block address in particular sector.

This approach is very useful for loop usage etc. Generally, it is up to user which one of these two
function types will use.

Linear Address Data Space

Writing of consecutive data larger than 1 block (16 bytes) can be pretty tricky because of Mifare
Classic memory organization map. Each 4™ block is so called “Trailer Block” containing keys and
access conditions.

For that purpose, uFR Series API use specific set of functions. User can write data even larger
than 1 block without concerning about Trailer Blocks. Reader’s firmware will take care of Trailer
Blocks and arrange data in consecutive order, automatically jumping over Trailer Blocks.
Parameters needed for this purpose are starting address in bytes and data length. Linear
Address Data Space always begin at first free byte of specific card. In case of Mifare Classic
cards, it is Byte 0 of Block 1 in Sector 0.

These type of functions can be used with other card types and Linear Address Data Space may
start at different address. For example in case of Mifare Ultralight, Linear Address Data Space
start at byte 0 of Page 4, exactly after OTP bytes page.

Following example shows how Linear Address Data Space looks like in case of Mifare Classic
card.

Let’s write “Data” of 85 bytes, indexed as 0..84 bytes.

Digital Logic, www.d-logic.net Page 55

Using LinearWrite function, we will send Data, Starting address 0 and DatalLength 85.

Reader’s firmware will do the rest in following manner:

Sector 0 | Block 0 Manufacturer Block |
Block 1 Bytes 0 -15 Linear Space starts here at Byte 0
Block 2 Bytes 16 - 31
Block 3 Trailer | Jumping over Trailer
Sector 1 | Block O Bytes 32 - 47 LINEAR
Block 1 Bytes 48 - 63 SPACE
Block 2 Bytes 64 - 79
Block 3 Trailer Jumping over Trailer
cector 2 Block 0 Bytes 80- 84 Tfftofmodusnohﬁmnged(BWesS-

List of Mifare Classic specific functions

UFR_STATUS

BlockRead *]1

UFR STATUS BlockWrite *1

UFR STATUS | BlockInSectorRead

UFR STATUS | BlockInSectorWrite

UFR STATUS LinearRead *1

UFR STATUS | LinearWrite *1

UFR STATUS | LinRowRead *1

UFR STATUS | LinearFormatCard

UFR STATUS | SectorTrailerWrite

UFR STATUS | SectorTrailerWriteUnsafe
UFR STATUS | ValueBlockRead

UFR STATUS | ValueBlockWrite

UFR STATUS | ValueBlockInSectorRead
UFR STATUS | ValueBlockInSectorWrite
UFR STATUS | ValueBlockIncrement

UFR STATUS | ValueBlockDecrement

UFR_STATUS

ValueBlockInSectorIncrement

Digital Logic, www.d-logic.net

Page 56

UFR STATUS ValueBlockInSectorDecrement

“*k1” - function can be used with NFC T2T card types (i.e. all varieties of the Mifare
Ultralight, NTAG 203, NTAG 21x, Mikron MIK640D and other NFC T2T GENERIC tags).

If you want to use the following functions: ValueBlockRead(), ValueBlockWrite(),
ValueBlockInSectorRead(), ValueBlockInSectorWrite(), ValueBlocklncrement(),
ValueBlockDecrement(), ValueBlockinSectorincrement() and ValueBlockinSectorDecrement(),
then you need to change access bits for data blocks in chosen sector to one of the “value blocks
application” access condition. You can do this using uFR API function SectorTrailerWrite().

BlockRead

Function description
Read particular block using absolute Block address.

Digital Logic, www.d-logic.net Page 57

Function declaration (C language)

UFR_STATUS BlockRead(uint8 t *data,
uint8_ t block address,
uint8 t auth mode,
uint8 t key index);

UFR_STATUS BlockRead AKMI (uint8_t *data,
uint8 t block address,
uint8_ t auth_mode) ;

UFR_STATUS BlockRead AKM2 (uint8 t *data,
uint8_ t block address,
uint8 t auth mode) ;

UFR_STATUS BlockRead PK(uint8_ t *data,
uint8 t block_address,
uint8 t auth mode,
const uint8_t *key);

*only uFR CS with SAM support

UFR_STATUS BlockReadSamKey (uint8 t *data,
uint8 t block_address,
uint8 t auth mode,
uint8 t key index);

Parameters

Digital Logic, www.d-logic.net

Page 58

data

Pointer to array of bytes containing data

block address

Absolute block address

auth _mode

For Mifare Classic tags defines whether to perform authentication with key

A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH® with BlockRead() or
BlockRead PK() functions. Value 0x60 with BlockRead() or
BlockRead_PK() functions means “without PWD_AUTH" and in that case
you can send for ucReaderKeylndex or aucProvidedKey parameters
anything you want without influence on the result. For NTAG 21x, Ultralight
EV1 and other T2T tags supporting PWD_AUTH you can use _AKM1 or
_AKM2 function variants only without PWD_AUTH in any case of the valid
values (0x60 or 0x61) provided for this parameter.

For Mifare Plus tags (PK mode) defines whether to perform authentication
with key A or key B:

use KeyA - MIFARE_PLUS_AES_AUTHENT1A = 0x80

or KeyB - MIFARE_PLUS _AES AUTHENT1B = 0x81

key index

Index of reader key to be used (RK mode)

For Crypto1 keys (0 - 31)

For Mifare Plus AES keys (0 -15) (fw version to 5.0.28)

For key into SAM (1 - 127)

For Mifare Plus and fw versions from 5.0.29 and library versions from
5.0.19. in MIFARE_AUTHENT1A or MIFARE_AUTHENT1B mode uses
AES key calculated from Crypto1 key (0 -31), and in
MIFARE_PLUS_AES_AUTHENT1A or MIFARE_PLUS_AES_AUTHENT1B
mode uses AES keys (0 - 15)

key

Pointer to 6 bytes array containing Crypto1 key (PK mode)
For Mifare Plus pointer to 16 bytes array containing AES key (PK mode)

When using this function with other card types, auth mode, key index and key parameters
are not relevant but they must take default values.

BlockWrite

Function description

Write particular block using absolute Block address.

Digital Logic, www.d-logic.net Page 59

Function declaration (C language)
UFR_STATUS BlockWrite (uint8_t *data,

uint8 t block_address,
uint8 t auth mode,
uint8 t key index);

UFR_STATUS BlockWrite AKMI (uint8 t *data,

uint8_ t block address,
uint8 t auth mode) ;

UFR_STATUS BlockWrite AKM2(uint8 t *data,

uint8 t block_address,
uint8 t auth _mode) ;

UFR_STATUS BlockWrite PK(uint8 t *data,

uint8 t block address,
uint8_ t auth mode, const uint8_ t *key)

*only uFR CS with SAM support
UFR_STATUS BlockWriteSamKey (uint8_ t *data,

Parameters

uint8 t block_address,
uint8 t auth mode,
uint8 t key index);

data

Pointer to array of bytes containing data

block address

Absolute block address

auth _mode

For Mifare Classic tags defines whether to perform authentication with key A

or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH
value 0x61 means “use PWD_AUTH" with BlockWrite() or BlockWrite PK()
functions. Value 0x60 with BlockWrite() or BlockWrite_PK() functions means
“‘without PWD_AUTH" and in that case you can send for ucReaderKeylndex or
aucProvidedKey parameters anything you want without influence on the result.
For NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH you
can use _AKM1 or _AKM?2 function variants only without PWD_AUTH in any
case of the valid values (0x60 or 0x61) provided for this parameter.

For Mifare Plus tags (PK mode) defines whether to perform authentication with
key A or key B:

use KeyA - MIFARE_PLUS_AES_AUTHENT1A = 0x80

or KeyB - MIFARE_PLUS AES AUTHENT1B = 0x81

key index

Index of reader key to be used (RK mode)

For Crypto1 keys (0 - 31)

For Mifare Plus AES keys (0 -15)

For key into SAM (1 - 127)

For Mifare Plus and fw versions from 5.0.29 and library versions from 5.0.19. in
MIFARE_AUTHENT1A or MIFARE _AUTHENT1B mode uses AES key

Digital Logic, www.d-logic.net Page 60

calculated from Crypto1 key (0 -31), and in MIFARE_PLUS_AES_AU
or MIFARE_PLUS AES AUTHENT1B mode uses AES keys (0 - 15)

THENT1A

key Pointer to 6 bytes array containing Crypto1 key (PK mode)

For Mifare Plus pointer to 16 bytes array containing AES key (PK mode)

When using this function with other card types, auth mode, key index and key parameters

are not relevant but they must take default values.

BlockinSectorRead

Function description

Read particular block using relative Block in Sector address.

Function declaration (C language)

UFR_STATUS BlockInSectorRead(uint8_t *data, uint8_ t sector_address,

uint8 t block in sector_ address,
uint8 t auth mode, uint8 t key index);

UFR_STATUS BlockInSectorRead AKMI (uint8 t *data, uint8 t
sector_address,
uint8 t block_in sector_address,
uint8 t auth _mode) ;

UFR_STATUS BlockInSectorRead AKM2 (uint8_ t *data, uint8_t
sector_address,
uint8 t block_in sector_address,
uint8_ t auth mode) ;

UFR_STATUS BlockInSectorRead PK(uint8 t *data,uint8 t sector_ address,

uint8 t block_in sector_address,
uint8 t auth _mode,
const uint8_t *key);

*only uFR CS with SAM support

UFR_STATUS BlockInSectorReadSamKey (uint8 t *data,
uint8 t sector_address,
uint8 t block in sector_ address,
uint8 t auth mode, uint8 t key index);

Parameters
data Pointer to array of bytes containing data
sector address Absolute Sector address
block in sector address | Block address in Sector
auth mode For Mifare Classic tags defines whether to perform authentication
with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60

Digital Logic, www.d-logic.net Page 61

or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH* with
BlockIinSectorRead() or BlockinSectorRead_PK() functions. Value
0x60 with BlocklnSectorRead() or BlockinSectorRead PK()
functions means “without PWD_AUTH" and in that case you can
send for ucReaderKeylndex or aucProvidedKey parameters
anything you want without influence on the result. For NTAG 21x,
Ultralight EV1 and other T2T tags supporting PWD_AUTH you can
use AKM1 or AKM?2 function variants only without PWD_AUTH
in any case of the valid values (0x60 or 0x61) provided for this
parameter.

For Mifare Plus tags (PK mode) defines whether to perform
authentication with key A or key B:

use KeyA - MIFARE_PLUS_AES_AUTHENT1A = 0x80

or KeyB - MIFARE_PLUS AES AUTHENT1B = 0x81

key index

Index of reader key to be used (RK mode)

For Crypto1 keys (0 - 31)

For Mifare Plus AES keys (0 -15)

For keys into SAM (1 - 127)

For Mifare Plus and fw versions from 5.0.29 and library versions
from 5.0.19. in MIFARE_AUTHENT1A or MIFARE_AUTHENT1B
mode uses AES key calculated from Crypto1 key (0 -31), and in
MIFARE_PLUS_AES_AUTHENT1A or
MIFARE PLUS AES AUTHENT1B mode uses AES keys (0 - 15)

key

Pointer to 6 bytes array containing Crypto1 key (PK mode)
For Mifare Plus pointer to 16 bytes array containing AES key (PK
mode)

BlockinSectorWrite

Function description

Write particular block using relative Block in Sector address.

Digital Logic, www.d-logic.net

Page 62

Function declaration (C language)
UFR_STATUS BlockInSectorWrite(uint8 t *data, uint8_t sector_address,

uint8_ t block in sector_ address,
uint8 t auth mode, uint8 t key index);

UFR_STATUS BlockInSectorWrite AKMI (uint8_ t *data,

uint8 t sector_address,
uint8 t block_in sector_address,
uint8 t auth _mode) ;

UFR_STATUS BlockInSectorWrite AKM2 (uint8 t *data,

uint8 t sector_ address,
uint8 t block_in sector_address,
uint8_ t auth mode) ;

UFR_STATUS BlockInSectorWrite PK(uint8 t *data, uint8_t sector_address,

uint8 t block_in sector_address,
uint8 t auth mode, const uint8_ t *key);

*only uFR CS with SAM support
UFR_STATUS BlockInSectorWriteSamKey (uint8 t *data,

Parameters

uint8 t sector_address,
uint8 t block_in sector_address,
uint8 t auth mode, uint8 t key index);

data

Pointer to array of bytes containing data

sector address

Absolute Sector address

block in sector address

Block address in Sector

auth_mode

For Mifare Classic tags defines whether to perform
authentication with key A or key B:

use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61
For NTAG 21x, Ultralight EV1 and other T2T tags
supporting PWD_AUTH value 0x61 means “use PWD_AUTH*
with BlockInSectorWrite() or BlockinSectorWrite_PK() functions.
Value 0x60 with BlockInSectorWrite() or
BlockIinSectorWrite PK() functions means “without
PWD_AUTH* and in that case you can send for
ucReaderKeylndex or aucProvidedKey parameters anything
you want without influence on the result. For NTAG 21x,
Ultralight EV1 and other T2T tags supporting PWD_AUTH you
can use _AKM1 or _AKMZ2 function variants only without
PWD_AUTH in any case of the valid values (0x60 or 0x61)
provided for this parameter.

For Mifare Plus tags (PK mode) defines whether to perform
authentication with key A or key B:

use KeyA - MIFARE_PLUS_AES_AUTHENT1A = 0x80

Digital Logic, www.d-logic.net

Page 63

or KeyB - MIFARE_PLUS_AES_AUTHENT1B = 0x81

key index

Index of reader key to be used (RK mode)

For Crypto1 keys (0 - 31)

For Mifare Plus AES keys (0 -15)

For keys into SAM (1 - 127)

For Mifare Plus and fw versions from 5.0.29 and library versions
from 5.0.19. in MIFARE_AUTHENT1A or
MIFARE_AUTHENT1B mode uses AES key calculated from
Crypto1 key (0 -31), and in MIFARE_PLUS_AES_AUTHENT1A
or MIFARE_PLUS_AES_AUTHENT1B mode uses AES keys (0
- 15)

key

Pointer to 6 bytes array containing Crypto1 key (PK mode)
For Mifare Plus pointer to 16 bytes array containing AES key
(PK mode)

LinearRead

Function description

Group of functions for linear reading in uFR firmware utilise FAST _READ ISO 14443-3 command
with NTAG21x and Mifare Ultralight EV1 tags.

Function declaration (C language)

UFR_STATUS LinearRead(uint8_ t *Data, uintl6_t linear address,
uintl6é_t length, uintl6é_t *bytes_returned,
uint8_ t auth mode, uint8 t key index);

UFR_STATUS LinearRead AKMI1 (uint8_ t *Data, uintl6é_t linear_ address,
uintlé_t length, u1nt16 t *bytes_. returned, uints8 -t

auth _mode) ;

UFR_STATUS LinearRead AKM2 (uint8 t *Data, uintlé_t linear address,
uintl6é_t length, uintl6é_t *bytes_. returned uint8 t

auth_mode) ;

UFR_STATUS LinearRead PK(uint8 t *Data, uintl6_t linear address,
uintl6é_t length, uintl6é_t *bytes_returned,
uint8 t auth mode, const uint8 t *key);

*only uFR CS with SAM support

UFR_STATUS LinearReadSamKey (uint8 t *Data, uintl6é_t linear address,
uintl6é_t length, uintl6é_t *bytes returned,
uint8 t auth mode, uint8 t key index);

Parameters
data Pointer to array of bytes containing data
linear address Address of byte — where to start reading

Digital Logic, www.d-logic.net

Page 64

length

Length of data — how many bytes to read

bytes returned

Pointer to variable holding how many bytes are returned

auth_mode

For Mifare Classic tags defines whether to perform authentication

with key A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH" with LinearRead()
or LinearRead PK() functions. Value 0x60 with LinearRead() or
LinearRead_PK() functions means “without PWD_AUTH"* and in that
case you can send for ucReaderKeylndex or aucProvidedKey
parameters anything you want without influence on the result. For
NTAG 21x, Ultralight EV1 and other T2T tags supporting PWD_AUTH
you can use _AKM1 or _AKMZ2 function variants only without
PWD_AUTH in any case of the valid values (0x60 or 0x61) provided
for this parameter.

For Mifare Plus tags (PK mode) defines whether to perform
authentication with key A or key B:

use KeyA - MIFARE_PLUS_AES_AUTHENT1A = 0x80

or KeyB - MIFARE_PLUS AES AUTHENT1B = 0x81

key index

Index of reader key to be used (RK mode)

For Crypto1 keys (0 - 31)

For Mifare Plus AES keys (0 -15)

For keys into SAM (1 - 127)

For Mifare Plus and fw versions from 5.0.29 and library versions from
5.0.19. in MIFARE_AUTHENT1A or MIFARE_AUTHENT1B mode
uses AES key calculated from Crypto1l key (0 -31), and in
MIFARE_PLUS_AES AUTHENT1A or
MIFARE_PLUS_AES_AUTHENT1B mode uses AES keys (0 - 15)

key

Pointer to 6 bytes array containing Crypto1 key (PK mode)
For Mifare Plus pointer to 16 bytes array containing AES key (PK
mode)

When using this functions with other card types, auth mode, key index and key parameters
are not relevant but must take default values.

LinearWrite

Function description

These functions are used for writing data to the card using emulation of the linear address space.
The method for proving authenticity is determined by the suffix in the functions names.

Function declaration (C language)

Digital Logic, www.d-logic.net Page 65

UFR_STATUS LinearWrite(uint8 t *Data,

uintl6é_t linear address,
uintlé_t length,
uintlé_t *bytes returned,
uint8 t auth mode,
uint8 t key index);

UFR_STATUS LinearWrite AKMI (uint8 t *Data,

uintl6é_t linear address,
uintlé_t length,

uintl6é_t *bytes returned,
uint8_ t auth mode) ;

UFR_STATUS LinearWrite AKM2 (uint8 t *Data,

uintl6é_t linear address,
uintlé_t length,

uintlé_t *bytes returned,
uint8_ t auth mode) ;

UFR_STATUS LinearWrite PK(uint8 t *Data,

uintl6é_t linear address,
uintlé_t length,

uintl6é_t *bytes returned,
uint8 t auth_mode,

const uint8_t *key);

*only uFR CS with SAM support
UFR_STATUS LinearWriteSamKey (uint8 t *Data,

uintl6é_t linear address,
uintlé_t length,
uintlé_t *bytes returned,
uint8 t auth mode,
uint8 t key index);

Parameters

data Pointer to array of bytes containing data
linear address | Address of byte — where to start writing
length Length of data — how many bytes to write

bytes returned

Pointer to variable holding how many bytes are returned

auth _mode

For Mifare Classic tags defines whether to perform authentication with key

A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH* with LinearWrite() or
LinearWrite_PK() functions. Value 0x60 with LinearWrite() or
LinearWrite_PK() functions means “without PWD_AUTH" and in that case
you can send for ucReaderKeylndex or aucProvidedKey parameters
anything you want without influence on the result. For NTAG 21x, Ultralight
EV1 and other T2T tags supporting PWD AUTH you can use AKM1 or

Digital Logic, www.d-logic.net Page 66

_AKM2 function variants only without PWD_AUTH in any case of the valid
values (0x60 or 0x61) provided for this parameter.

For Mifare Plus tags (PK mode) defines whether to perform authentication
with key A or key B:

use KeyA - MIFARE_PLUS_AES_AUTHENT1A = 0x80

or KeyB - MIFARE_PLUS AES AUTHENT1B = 0x81

key index

Index of reader key to be used (RK mode)

For Crypto1 keys (0 - 31)

For Mifare Plus AES keys (0 -15)

For keys into SAM (1 - 127)

For Mifare Plus and fw versions from 5.0.29 and library versions from
5.0.19. in MIFARE_AUTHENT1A or MIFARE_AUTHENT1B mode uses
AES key calculated from Crypto1 key (0 -31), and in
MIFARE_PLUS_AES AUTHENT1A or MIFARE_PLUS_AES_AUTHENT1B
mode uses AES keys (0 - 15)

key

Pointer to 6 bytes array containing Crypto1 key (PK mode)
For Mifare Plus pointer to 16 bytes array containing AES key (PK mode)

When using this function with other card types, auth mode, key index and key parameters
are not relevant but must take default values.

LinRowRead

Function description

Read Linear data Address Space. On the contrary of LinearRead functions, this functions read
whole card including trailer blocks and manufacturer block.

This function is useful when making “dump” of the whole card.

Group of functions for linear reading in uFR firmware utilise FAST_READ ISO 14443-3 command
with NTAG21x and Mifare Ultralight EV1 tags.

Digital Logic, www.d-logic.net Page 67

Function declaration (C language)

UFR_STATUS LinRowRead(uint8_t *Data,
uintlé_t linRow_address,
uintlé_t length,
uintlé_t *bytes_ returned,
uint8 t auth _mode,
uint8 t key index);

UFR_STATUS LinRowRead AKMI1 (uint8 t *Data,
uintl6é_t linRow_address,
uintlé_t length,
uintlé_t *bytes returned,
uint8 t auth mode) ;

UFR_STATUS LinRowRead AKM2 (uint8 t *Data,
uintl6é_t linRow_address,
uintlé_t length,
uintlé_t *bytes returned,
uint8 t auth mode) ;

UFR_STATUS LinRowRead PK(uint8 t *Data,

uintl6é_t linRow_address,
uintlé_t length,

Digital Logic, www.d-logic.net

Page 68

uintlé_t *bytes returned,
uint8 t auth mode,
const uint8_t *key)

Parameters

data Pointer to array of bytes containing data
linear address | Address of byte — where to start reading
length Length of data — how many bytes to read

bytes returned

Pointer to variable holding how many bytes are returned

auth _mode

For Mifare Classic tags defines whether to perform authentication with key

A or key B:
use KeyA - MIFARE_AUTHENT1A = 0x60
or KeyB - MIFARE_AUTHENT1B = 0x61

For NTAG 21x, Ultralight EV1 and other T2T tags supporting
PWD_AUTH value 0x61 means “use PWD_AUTH" with LinRowRead() or
LinRowRead PK() functions. Value 0x60 with LinRowRead() or
LinRowRead_PK() functions means “without PWD_AUTH" and in that
case you can send for ucReaderKeylndex or aucProvidedKey parameters
anything you want without influence on the result. For NTAG 21x, Ultralight
EV1 and other T2T tags supporting PWD_AUTH you can use _AKM1 or
_AKM2 function variants only without PWD_AUTH in any case of the valid
values (0x60 or 0x61) provided for this parameter.

key index

Index of reader’s key to be used (RK mode)

key

Pointer to 6 byte array containing key bytes (PK mode)

When using this function with other card types, auth mode, key index and key parameters
are not relevant but they must take default values.

LinearFormatCard

Function description

This function is specific to Mifare Classic cards only. It performs “Format card” operation - write
new Sector Trailer values on whole card at once. It writes following data:

KeyA, Block Access Bits, Trailer Access Bits, GeneralPurposeByte(GPB), KeyB, same as
construction of Sector Trailer.

Bytes 0 - 5

Bytes 6 - 8 Byte 9 Bytes 10 - 15

KeyA

Block Access & GPB KeyB

Trailer Access Bits

For more information, please refer to Mifare Classic Keys and Access Conditions in this document.

Mifare Plus using.

For firmware versions from 5.0.29 and library versions from 5.0.19, this functions may be used for
Mifare plus cards. If authetntication mode is MIFARE_AUTHENT1A or MIFARE_AUTHENT1B,

Digital Logic, www.d-logic.net Page 69

AES key for authentication, and new AES key A and new AES key B are caluculate from Crypto1

keys. If authentication

mode is MIFARE_PLUS_AES_AUTHENT1A

MIFARE_PLUS_AES_AUTHENT1B, new AES keys are provode to reader.

Function declaration (C language)

UFR_STATUS LinearFormatCard(const uint8 t *new_key A,

uint8 t blocks_access bits,

uint8 t sector_trailers_access_bits,
uint8 t sector trailers byte9,

const uint8_ t *new_key B,

uint8 t *lpucSectorsFormatted,
uint8 t auth _mode,

uint8 t key index);

UFR_STATUS LinearFormatCard AKMI (const uint8 t *new key A,

uint8 t blocks_access bits,

uint8 t sector_ trailers_access_bits,
uint8 t sector trailers byte9,

const uint8_ t *new_key B,

uint8 t *lpucSectorsFormatted,
uint8 t auth _mode) ;

UFR_STATUS LinearFormatCard AKM2 (const uint8_ t *new _key A,

uint8 t blocks_access bits,

uint8 t sector_ trailers_access_bits,
uint8 t sector_trailers_byte9,

const uint8_ t *new_key B,

uint8 t *lpucSectorsFormatted,
uint8_ t auth mode) ;

UFR_STATUS LinearFormatCard PK(const uint8 t *new_key A,

uint8 t blocks_access_bits,

uint8 t sector trailers access bits,
uint8 t sector_ trailers byte9,

const uint8_ t *new_key B,

uint8_ t *lpucSectorsFormatted,
uint8 t auth mode,

const uint8_t *key);

or

These functions are used for new keys A and B writing as well as access bits in the trailers of all
card sectors. Ninth bit setting is enabled. The same value is set for the entire card. If you need
to prove authenticity on the base of previous keys, these functions are suit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>