Mobile Unique ID via NFC
- Source code software examples -
v1.0

Table of contents

Table of contents
About

Usage

AID usage

Revision history

About

This document demonstrates the use of "“Mobile Unique ID via NFC" software written in Java for desktop
and Android. The purpose of these software examples is to obtain the Android device's Unique Identifier and
read it using the pFR Series NFC readers.

Java desktop example:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-mobile _unique id_via_nfc-examples-java.git
Java Android example:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-mobile _unique id_via_nfc-examples-android

Usage

Connect the pFR Series NFC reader to your PC and run the desktop software example.

Click the “Reader Open" button to establish communication with the pFR Series NFC reader.

Successful “Reader Open” will start a command transmission loop for obtaining IDs from NFC tags and
Android devices. Clicking the “Reader Close” button or closing the application windows will end the loop.

&y Mobile Unique ID via NFC Desktop example v1.0 — O X

Reader Open Reader Reset Reader Close

[] Use Advanced options

uD: |

STATUS: [0x08 (8)] UFR_NO_CARD

When no card is present.

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-mobile_unique_id_via_nfc-examples-java.git
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-mobile_unique_id_via_nfc-examples-android

=¥ Mobile Unique D via MFC Desktop example v1.0 — O b

Reader Open Reader Reset Reader Close

[] Use Advanced options

UID: |SE3B12F

STATUS: [0x00 (0)] UFR_OK

Tag with a 4-byte UID is detected.

To receive a Unique identifier from an Android device, you will need to install our Android app first.
“Mobile Unique ID via NFC” Android app is available for download at:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-mobile_unique _id_via_nfc-examples-android

This app will register an HCE (Host Card Emulation) based service that responds to a particular AID sent
from our desktop software. As a result, the response will consist of an 8-byte UID of the Android device.

N¢ = all 100% B

Unique ID

0001020304050607/

Android UID is displayed when Android app example is launched

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-mobile_unique_id_via_nfc-examples-android

¥ Mobile Unique ID via MFC Desktop example v1.0 — O *

Reader Open Reader Reset Reader Close

[] Use Advanced options

UID: |0001020304050607

STATUS: [0x00 (0)] UFR_OK

Successfully read Android UID displayed in the desktop software

“Mobile Unique ID via NFC" Android app registers a service on the Android device with a specific AID.
Therefore, this app needs to be installed only once. open/run the app alongside the desktop software
afterward. Also, the service used in this software example allows you to read the Android UID even when
the device is locked. So, there is no need to unlock the device first. Simply tap your Android phone on the
HFR Series NFC reader.

For additional references please check the official Android API:
https://developer.android.com/reference/android/provider/Settings.Secure#ANDROID _ID

Values of received UID are scoped by signing key and user. The value may change if a factory reset is
performed on the device or if an APK signing key changes. For more information about how the platform
handles this type of UID in Android 8.0 (API level 26) and higher, see Android 8.0 Behavior Changes.

AID usage

The rules for smartcard application identifiers (AIDs) are defined in ISO/IEC 7816-4. An AID has at least 5
bytes and may consist of up to 16 bytes. Based on the first 4 bits, AIDs are divided into different groups.
The most relevant groups defined in ISO/IEC 7816-4 are:

AIDs starting with 'A": internationally registered AIDs
AIDs starting with 'D": nationally registered AIDs
AlDs starting with 'F": proprietary AIDs (no registration)

https://developer.android.com/reference/android/provider/Settings.Secure#ANDROID_ID
https://developer.android.com/about/versions/oreo/android-8.0-changes#privacy-all

For (inter)nationally registered AIDs, the AID is split into two parts: a 5-byte mandatory RID (registered
application provider identifier), and an optional PIX (proprietary application identifier extension) of up to 11
bytes.

For proprietary AlDs (F...), you can use any arbitrary value.
AID used in this example is the same one used in our previous Android HCE example:
https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-host _card _emulation.git

e To change this AID, following changes are mandatory:
In desktop software, change the AID that is being sent with the APDUHexStrTransceive() function.
This change should be introduced on the Line 355 in the “window.java" file (full path:

ufr_mobile_unique_id_via_nfc_examples_java/src/window.java)
}

status = ufr.APDUHexStrTransceive("ee A4 84 08 B6QFoelezeszedesgee”, rapdu ptr);
if (status != 8) {

System.out.println(" Error occurred while sending APDU command, uFR status is: *
+ ufr.UFR_Status25tring(status));
1blstatus.setText(ufr.UFR_Status25tring(status));

nownoun
]

nownounowun
(e Ul v IR s Y |

(]

Current AID being sent from the example, code snippet.

e Also, AID must be changed in the Android app example. So that the AID sent from desktop software
corresponds to the one registered in the Android app. Introduce the following changes in the
Android example:

=4 apduservicexml

<host-apdu-service

Change the registered AID in the "apudservice”.xml file.

https://www.d-logic.net/code/nfc-rfid-reader-sdk/ufr-examples-android-host_card_emulation.git

HostCardEmulatorService java

i
=]
(=

T
=
(=

Change the "AID” constant value in the "HostCardEmulatorService.java” file.

N)

Digital Logic

Revision history

Version Comment

2021-02-08 1.0 Base document

8
Digital Logic Ltd.

Address: Nemanjina 57a, 12000 Pozarevac, Serbia - Tel: +38112541022- VAT: 111385444 Regq. 21473642
e-mail: office@d-logic.com - www.d-logic.com

