
Using uFCoder library in Xcode
1.4

1

Table of contents

iOS development 3
Download iOS library 3
Linking static uFCoder library for iOS app development 3
iOS uFCoder library usage 4
Necessary information for projects “info.plist” file 4

BLE usage 4
NFC usage 4

macOS development 7
Download macOS Universal libraries 7
Linking macOS uFCoder library 7

uFCoder - import C functions to Swift 9
C types 9
Pointers 10
Examples 10

GetCardIdEx() 10
C declaration 10
Swift declaration 10
Swift code 11

BlockWrite() 11
C declaration 11
Swift declaration 11
Swift code 11

BlockRead() 12
C declaration 12
Swift declaration 12
Swift code 12

R e v i s i o n h i s t o r y 13

2

iOS development

Download iOS library
uFCoder libraries can be found here:
https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib/tree/master/ios

Linking static uFCoder library for iOS app development

1. Open your project settings in XCode, and go to “Build Phases”
2. Under “Link Binary With Libraries” click on “+” to add the “libuFCoder-ios-static.a” file in your

project. (If you are using our ufr-lib repository, path of this file should resemble
”/ufr-lib/ios/libuFCoder-ios-static.a”)

3. Depending on whether using Swift or Objective-C, you will need to include “uFCoder.h” header file in
your project
3.1. Swift

3.1.1. Add a bridging header to Xcode project (File > New > File > Header file)
3.1.2. For example name the new file “YourProjectName-Bridging-Header.h”
3.1.3. Create the file and add “#import “<path_to_uFCoder.h_file>”

(e.g “#include “ufr-lib/include/uFCoder.h”)
3

https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib/tree/master/ios

3.1.4. Navigate to your project build settings and find the “Swift Compiler - General”
section

3.1.5. Add path of our newly created bridging header file in the value field of
“Objective-C Bridging Header” field

3.2. Objective-C
No bridging header is necessary for Objective-C.
Simply add “#import “<path_to_uFCoder.h_file>” after you link your project with
uFCoder library, as explained in step 2 and you’re finished with setting up usage of
uFCoder library in your application.

iOS uFCoder library usage
uFCoder library for iOS currently only supports our uFR Nano Online NFC reader. More specifically, it
supports UDP, TCP and BLE communication with this device. There is also support for using the NFC
antenna on your iOS device using our library for sending and receiving data, however it only supports APDU
commands using the ApduPlainTransceive() function (demo code will be provided in the following text).
When using BLE or phone NFC, your project's “info.plist” file must be updated accordingly, with necessary
information about permissions and capabilities of your app.

Necessary information for projects “info.plist” file

BLE usage
If you plan on using BLE, you need to add the following keys with a message in your projects “info.plist” file:

● “privacy - bluetooth always usage description”
● “privacy - bluetooth peripheral usage description”

Refer to the official documentation for these keys:
https://developer.apple.com/documentation/corebluetooth

To connect to uFR Nano Online when the reader is in BLE mode, use ReaderOpenEx() function with
following parameters:

● Reader type: 0
● Port name: ONxxxxxx - serial number of the reader (e.g ON123456_BLE)
● Port interface: ‘L’ or 76 (decimal)
● Additional argument: null (not a necessary parameter)

ReaderOpenEx() should return UFR_OK on success and readers RGB colors will be steady light-blue.

4

https://developer.apple.com/documentation/corebluetooth

NFC usage
For now, you can use NFC only to send APDU commands via the device's NFC antenna.
You will need to add following in the “info.plist” file:

● “com.apple.developer.nfc.readersession.formats” - NFC data formats an app can read. This
entitlement requires you to add “Near Field Communication Tag Reading” capability. This
entitlement should be an array of strings in the info.plist file, add the “TAG” string as a value for this
entitlement.

● “ISO7816 application identifiers for NFC Tag Reader Session” - list of application identifiers that the
app supports. This entitlement is an array, and should contain following values:

○ A0000002471001
○ D2760000850101
○ 00000000000000

● “Privacy - NFC Scan Usage Description” - message that tells the user why the app is
requesting access to the device’s NFC hardware.

Use ReaderOpenEx() function with the following parameters:
● Port name: 5
● Port name: “”
● Port Interface: 0
● Additional argument: null or 0

To send an APDU command, connecting to the tag is necessary, to achieve this - SetISO14443_4_Mode()
function is used.

On successful connection, UFR_OK is returned, and the tag is ready to receive APDU command(s).

To send an APDU command - ApduPlainTransceive() function is necessary.
Once you’re done with sending the APDU commands, call s_block_deselect() function.

Whole process should look like this: (Swift code bellow):

5

6

macOS development
As of version 5.0.84 - users have access to uFCoder Universal libraries for macOS that can be used natively
on both Apple silicon and Intel-based Mac computers.
Supported architectures: x86_64 and arm64.

Download macOS Universal libraries
Both dynamic (.dylib) and static (.a) libraries are provided in our SDK repository.
They can be found here:
https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib/tree/master/macos

Subfolders are:
- x86_64: dynamic library for Intel x86_64 only
- static-x86_64: static library for Intel x86_64 only
- universal: dynamic universal library for both x86_64 and arm64
- static-universal: static universal library for both x86_64 and arm64

Linking macOS uFCoder library
1. Open your project settings in XCode, and go to “Build Phases”
2. Under Link Binary With Libraries” click on “+” to add the “libuFCoder-macos.dylib” file in your

project. (If you are using our ufr-lib repository, path of this file should be something like
”/ufr-lib/ios/uFCoder-ios-static.a”)

3. Depending on whether using Swift or Objective-C, you will need to include “uFCoder.h” header file in
your project
3.1. Swift

3.1.1.1. Add a bridging header to Xcode project (File > New > File > Header file)
3.1.1.2. For example name the new file “YourProjectName-Bridging-Header.h”
3.1.1.3. Create the file and add “#import “<path_to_uFCoder.h_file>”

(e.g “#include “ufr-lib/include/uFCoder.h”)
3.1.1.4. Navigate to your project build settings and find the “Swift Compiler - General”

section
3.1.1.5. Add path of our newly created bridging header file in the value field of

“Objective-C Bridging Header” field

7

https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-lib/tree/master/macos

3.2. Objective-C
3.2.1.1. No bridging header is necessary for Objective-C.

Simply add “#import “<path_to_uFCoder.h_file>” after you link your project
with uFCoder library, as explained in step 2 and you’re finished with setting up
usage of uFCoder library in your application.

Important: When linking the dynamic library make sure the following settings are valid:
1. Build Phases -> Link Binary with Libraries: Add the libuFCoder-macos.dylib
2. Go to tab General and make sure the uFCoder library is embed in the “Framewok, Libraries and

Embedded Content”

After the library is set to be embed, Build phases will add Embed Libraries step automatically, with the
default of copying the library to the apps Frameworks directory

3. Set the Runpath Search Paths as: @executable_path/../Frameworks
4. Finally, if you plan on using App Sandbox make sure your entitlements file contains necessary
permissions:

8

uFCoder - import C functions to Swift
Due to uFCoder library being native C library, parameters will need to be configured properly and adjusted
to be compatible with C types when importing and using methods from uFCoder.h.

C types
Frequently used C types in uFCoder.h are:

C Swift Type

bool Bool

char, unsigned char
(int8_t, uint8_t)

Int8, UInt8

short, unsigned short
(int16_t, uint16_t)

Int16, UInt16

int, unsigned int
(int32_t, uint32_t)

Int32, UInt32

long long, unsigned long long
(int64_t, uint64_t)

Int64, UInt64

9

Pointers

C Type Swift Type

char*, unsigned char*
(int8_t*, uint8_t*)

UnsafeMutablePointer<Int8>!
UnsafeMutablePointer<UInt8>!

short, unsigned short
(int16_t, uint16_t)

UnsafeMutablePointer<Int16>!
UnsafeMutablePointer<UInt16>!

int, unsigned int
(int32_t, uint32_t)

UnsafeMutablePointer<Int32>!
UnsafeMutablePointer<UInt64>!

long long, unsigned long long
(int64_t, uint64_t)

UnsafeMutablePointer<Int64>!
UnsafeMutablePointer<UInt64>!

void* UnsafeMutableRawPointer!

With the void* (UnsafeMutableRawPointer) as an exception, most often these pointers refer to a single
variable (VAR parameters in uFCoder.h) used to return some value, or an array being passed/returned
(IN/OUT parameters in uFCoder.h)

Refer to uFR Series NFC Reader API for details about the parameters.
Git repository for documentation: https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-doc.git

Examples

GetCardIdEx()

C declaration

GetCardIdEx(VAR uint8_t* lpucSak, OUT uint8_t *aucUid, VAR uint8_t *lpucUidSize);

Swift declaration
GetCardIdEx(lpucSak: UnsafeMutablePointer<UInt8>!, aucUid:

UnsafeMutablePointer<UInt8>!, lpucUidSize: UnsafeMutablePointer<UInt8>!)

10

https://www.d-logic.com/code/nfc-rfid-reader-sdk/ufr-doc.git

Swift code

var status: UFR_STATUS = UFR_COMMUNICATION_BREAK

var lpucSak: UInt8 = 0

var aucUid: [UInt8] = [UInt8](repeating: 0, count: 11)

var lpucUidSize: UInt8 = 0

status = GetCardIdEx(&lpucSak, &aucUid, &lpucUidSize)

…

BlockWrite()

C declaration

BlockWrite(IN const uint8_t *data, uint8_t block_address, uint8_t auth_mode,

uint8_t key_index);

Swift declaration
BlockWrite(data: UnsafePointer<UInt8>!, block_address: UInt8, auht_mode: UInt8, key_index: UInt8)

Swift code
var status: UFR_STATUS = UFR_COMMUNICATION_BREAK

var data: [UInt8] = [UInt8](repeating: 0, count: <data_len>)

var block_address: UInt8 = 0

var auth_mode: UInt8 = 0x60

var key_index: UInt8 = 0

status = BlockWrite(data, block_address, auth_mode, key_index)

…

11

BlockRead()

C declaration

BlockRead(OUT uint8_t *data, uint8_t block_address, uint8_t auth_mode, uint8_t

key_index);

Swift declaration
BlockRead(data: UnsafeMutablePointer<UInt8>!, block_address: UInt8, auht_mode:

UInt8, key_index: UInt8)

Swift code
var status: UFR_STATUS = UFR_COMMUNICATION_BREAK

var data: [UInt8] = [UInt8](repeating: 0, count: <data_len>)

var block_address: UInt8 = 0

var auth_mode: UInt8 = 0x60

var key_index: UInt8 = 0

status = BlockRead(&data, block_address, auth_mode, key_index)

…

12

R e v i s i o n h i s t o r y

Date Version Comment

2023-02-27 1.4 Linking macOS uFCoder library section updated.
uFCoder - import C functions to Swift section added.
Examples added.

2023-02-27 1.3 Document renamed. macOS development section
added.

2023-01-24 1.2 Download section added.

2021-10-29 1.1 BLE usage descriptions updated

2019-04-09 1.0 Base document

13

