
Using uFR library in Xcode
1.1

1

Table of contents

Linking static uFCoder library for iOS app development 3

iOS uFCoder library usage 4

Necessary information for projects “info.plist” file 4
BLE usage 4
NFC usage 4

R e v i s i o n h i s t o r y 7

2

Linking static uFCoder library for iOS app development

1. Open your project settings in XCode, and go to “Build Phases”
2. Under “Link With Libraries” click on “+” to add the “uFCoder-ios-static.a” file in your project. (If you

are using our ufr-lib repository, path of this file should be something like
”/ufr-lib/ios/uFCoder-ios-static.a”)

3. Depending on whether using Swift or Objective-C, you will need to include “uFCoder.h” header file in
your project
3.1. Swift

3.1.1. Add a bridging header to Xcode project (File > New > File > Header file)
3.1.2. For example name the new file “YourProjectName-Bridging-Header.h”
3.1.3. Create the file and add “#import “<path_to_uFCoder.h_file>”

(e.g “#include “ufr-lib/include/uFCoder.h”)
3.1.4. Navigate to your project build settings and find the “Swift Compiler - General”

section
3.1.5. Add path of our newly created bridging header file in the value field of

“Objective-C Bridging Header” field
3.1.6. Now you are free to use uFCoder functions in your iOS application.

3.2. Objective-C
3.2.1. No bridging header is necessary for Objective-C.

Simply add “#import “<path_to_uFCoder.h_file>” after you link your project with
uFCoder library, as explained in step 2 and you’re finished with setting up usage of
uFCoder library in your application.

Note: Using uFCoder library is not possible when working with iOS simulators.
It was built specifically for iOS devices.. (building for option “Generic iOS device” is possible)

3

iOS uFCoder library usage
uFCoder library for iOS currently only supports our uFR Nano Online NFC reader, more specifically, it
supports UDP, TCP and BLE communication with this device. There is also support for using the NFC
antenna on your iOS device using our library for sending and receiving data, however it only supports APDU
commands using the ApduPlainTransceive() function (demo code will be provided in the following text).
When using BLE or phone NFC, your project's “info.plist” file must be updated accordingly, with necessary
information about permissions and capabilities of your app.

Necessary information for projects “info.plist” file

BLE usage
If you plan on using BLE, you need to add the following keys with a message, in your projects “info.plist” file:

● “privacy - bluetooth always usage description”
● “privacy - bluetooth peripheral usage description”

Refer to the official documentation for these keys:
https://developer.apple.com/documentation/corebluetooth

To connect to uFR Nano Online when the reader is in BLE mode, use ReaderOpenEx() function with
following parameters:

● Reader type: 0
● Port name: ONxxxxxx - serial number of the reader (e.g ON123456_BLE)
● Port interface: ‘L’ or 76 (decimal)
● Additional argument: null (not a necessary parameter)

Function will return UFR_OK on success and readers RGB colors will be steady light-blue.

NFC usage
For now, you can use NFC only to send APDU commands via the device's NFC antenna.
You will need to add following in the “info.plist” file:

● “com.apple.developer.nfc.readersession.formats” - NFC data formats an app can read. This
entitlement requires you to add “Near Field Communication Tag Reading” capability. This

4

https://developer.apple.com/documentation/corebluetooth

entitlement should be an array of strings in the info.plist file, add the “TAG” string as a value for this
entitlement.

● “ISO7816 application identifiers for NFC Tag Reader Session” - list of application identifiers that the
app supports. This entitlement is an array, and should contain following values:

○ A0000002471001
○ D2760000850101
○ 00000000000000

● Privacy - NFC Scan Usage Description - message that tells the user why the app is requesting
access to the device’s NFC hardware.

Use ReaderOpenEx() function with the following parameters:
● Port name: 5
● Port name: “”
● Port Interface: 0
● Additional argument: null or 0

To send an APDU command, connecting to the tag is necessary, to achieve this - SetISO14443_4_Mode()
function is used.

On successful connect, UFR_OK is returned, and the tag is ready to receive APDU command(s).

To send an APDU command - ApduPlainTransceive() function is necessary.
Once you’re done with sending the APDU commands, call s_block_deselect() function.

Whole process should look like this: (Swift code bellow):

5

6

R e v i s i o n h i s t o r y

Date Version Comment

2021-10-29 1.1 BLE usage descriptions updated

2019-04-09 1.0 Base document

7

